
Universally Composable Adaptive Oblivious
Transfer

Matthew Green and Susan Hohenberger

The Johns Hopkins University
Information Security Institute

3400 N. Charles Street; Baltimore, MD 21218, USA.
{mgreen,susan}@cs.jhu.edu

Abstract. In an oblivious transfer (OT) protocol, a Sender with mes-
sagesM1, . . . ,MN and a Receiver with indices σ1, . . . , σk ∈ [1, N ] interact
in such a way that at the end the Receiver obtains Mσ1 , . . . ,Mσk with-
out learning anything about the other messages and the Sender does not
learn anything about σ1, . . . , σk. In an adaptive protocol, the Receiver
may obtain Mσi−1 before deciding on σi. Efficient adaptive OT protocols
are interesting as a building block for secure multiparty computation and
for enabling oblivious searches on medical and patent databases.

Historically, adaptive OT protocols were analyzed with respect to a
“half-simulation” definition which Naor and Pinkas showed to be flawed.
In 2007, Camenisch, Neven, and shelat, and subsequent other works,
demonstrated efficient adaptive protocols in the full-simulation model.
These protocols, however, all use standard rewinding techniques in their
proofs of security and thus are not universally composable. Recently,
Peikert, Vaikuntanathan and Waters presented universally composable
(UC) non-adaptive OT protocols for the 1-out-of-2 variant, in the static
corruption model using certain trusted setup assumptions. However, it is
not clear how to preserve UC security while extending these protocols to
the adaptive k-out-of-N setting. Further, any such attempt would seem
to require O(N) computation per transfer for a database of size N . In
this work, we present an efficient and UC-secure adaptive k-out-of-N
OT protocol in the same model as Peikert et al., where after an initial
commitment to the database, the cost of each transfer is constant. Our
construction is secure under bilinear assumptions in the standard model.

1 Introduction

Oblivious transfer (OT) was introduced by Rabin [31] and generalized by Even,
Goldreich and Lempel [19] and Brassard, Crépeau and Robert [8]. It is a two-
party protocol, where a Sender with messages M1, . . . ,MN and a Receiver with
indices σ1, . . . , σk ∈ [1, N ] interact in such a way that at the end the Receiver

This work was supported by the NSF under grant CT-0716142 and Hohenberger’s
Microsoft New Faculty Fellowship.



obtains Mσ1 , . . . ,Mσk
without learning anything about the other messages and

the Sender does not learn anything about σ1, . . . , σk. Naor and Pinkas were the
first to consider an adaptive setting, OTNk×1, where the Receiver may obtain
Mσi−1 before deciding on σi [28]. Efficient OT schemes are very important. OT4

1

is a key building block for secure multi-party computation [34, 21, 25]. OTNk×1 is
a useful and interesting tool in its own right, enabling oblivious databases for
applications such as medical record storage and patent searches [29].

Developing efficient adaptive protocols appears to be a more difficult and
involved process than the non-adaptive protocols. Indeed, even finding the right
security definition has proven challenging. Historically, many OT constructions
were analyzed under a “half-simulation” definition, where the Sender and Re-
ceiver’s security are described by a combination of simulation and game-based
definitions. Naor and Pinkas [28] showed that schemes analyzed under this def-
inition may admit practical attacks on the Receiver’s privacy. To address this,
Camenisch, Neven and shelat [10] and subsequently Green and Hohenberger [22]
proposed efficient and fully-simulatable OTNk×1 protocols under bilinear assump-
tions. Each of these protocols achieve the optimal total communication cost of
O(N+k) with reasonable constants. Unfortunately, their security proofs use ad-
versarial rewinding, and thus do not imply security under concurrent execution.

Recently, Lindell [26] showed how to achieve efficient and fully-simulatable
non-adaptive OT2

1 under the DDH, Nth residuosity and quadratic residuosity
assumptions, as well as the assumption that homomorphic encryption exists.
Simultaneously, Peikert, Vaikuntanathan and Waters [30] proposed several non-
adaptive, but universally composable OT2

1 protocols based on DDH, quadratic
residuosity and lattice assumptions. While both of these works add to our col-
lective knowledge for non-adaptive OT, they do not shed much light on how to
achieve efficient adaptive protocols. Indeed, Lindell points out that the adaptive
case is considerably harder [26].

The general framework used in [26, 30] (where the Receiver chooses the en-
cryption keys) seems inherently at odds with allowing efficient adaptive schemes.
Each transfer requires O(N) work for the Sender, whereas this can be constant
in our protocols. Even more alarming, it isn’t clear how (without killing the effi-
ciency and perhaps the UC security of [30]) a Sender could convince the Receiver
that he is not changing the database values with each request. This problem of
ensuring a consistent database gets even worse when multiple Receivers are con-
sidered, as we do in Section 5.

Our Results. In this work, we take a different approach to constructing OT
protocols, which allows them to be simultaneously efficient, adaptive, universally
composable and globally consistent. We summarize what is known about OTNk×1

protocols in Figure 1. Let us describe some highlights.

1. Universal Composability: The Universal Composability framework [13] al-
lows for the design of concurrent and composable cryptographic protocols,
which are important properties in any practical deployment of an oblivious
database. Canetti and Fischlin showed that OT cannot be UC-realized with-



Protocol Rounds Communication Assumption

Half Simulation:
NP99 [28] `k log N + 1/2 – Sum Consistent Synthesizers + `-round OT2

1
CT05 [18] O(k) + 1/2 O(N) Decisional DH (in ROM)

Full Simulation:
CNS07 [10] 4k + 1/2 O(N) y-Power Decisional DH + q-Strong DH
CNS07 [10] O(k) + 1/2 O(N) Unique blind signature (in ROM)
GH07 [22] k + 1/2 O(N) Decisional Bilinear DH (in ROM)

UC (FCRS-hybrid):
This work (§4) k + 1/2 O(N) SXDH + DLIN + q-Hidden LRSW

Fig. 1. Survey of efficient, adaptive k-out-of-N Oblivious Transfer protocols.

out trusted setup assumptions such as the existence of a Common Reference
String (CRS) [15]. This is formally referred to as the FCRS-hybrid model,
and is assumed by the constructions of Peikert et al. [30] as well as those in
this work. As in [30], we work in a static corruption model.

2. Efficiency: Our protocol is practical. For a database of N objects, the initial-
ization phase requires O(N) communication cost, and each transfer phase
requires only constant cost, for reasonable constants. In contrast, simply
repeating a OTN1 scheme (such as [30]) k times would require O(N) com-
munication cost for each transfer plus the additional work required for the
Sender to convince the Receiver that he isn’t changing the database values
dynamically. Moreover, the message space of our protocol is a group element
(so at least 160 bits), whereas the quadratic residuosity and lattice-based
schemes of [30] have one-bit message spaces. We note, however, that the
DDH-based scheme of [30] allows for multiple bit messages.

3. Model and Assumptions: We focus on protocols secure in the standard model.
Our construction can be implemented assuming SXDH [32, 5, 2, 24], Decision
Linear [5], and q-Hidden LRSW (a non-interactive variant of the LRSW
assumption [27], for which we give a generic group proof in the full version of
this work [23].) We note that our decisional assumptions, SXDH and Decision
Linear, are much more simple than the q-Power Decisional Diffie-Hellman
assumption used in the (non-UC) adaptive OT of Camenisch et al. [10].
In the full version, we also provide a second construction that is secure in
symmetric groups (i.e., where SXDH does not hold) under an alternative set
of hardness assumptions. See Figure 1 for more.

Intuition behind the Construction. Oblivious Transfer protocols can be
roughly divided into two categories. Let’s restrict our attention to non-adaptive
OTN1 for the moment. In approach (1), which is used by [31, 19, 26, 30], the
Receiver transmits a collection of specially-formed encryption keys to the Sender,
who encrypts each message and returns the N ciphertexts to the Receiver. The
protocol is secure provided that the encryption keys are formed such that a
Receiver is able to decrypt at most one of the resulting ciphertexts. In approach
(2), which is used by [18, 10, 22] and this work, the Sender encrypts the message
collection under keys of her own choosing, and— in some interactive protocol
with the Receiver— helps to decrypt one ciphertext.



While both approaches can be used to implement adaptive OT in theory, the
first approach requires that the Sender generate a new set of ciphertexts at each
transfer stage (for each receiver), requiring at least O(N · k) cost. Even worse,
the Sender might be able to maliciously change the database between transfers
and present different versions of the database to different receivers.

The latter approach is much better suited for the adaptive case. A single
database can be committed to and then each decryption can be performed in
constant computational and communication cost, for a total O(N + k) cost.
This approach is taken by the fully-simulatable protocols of [10], which both use
rewinding in their simulations to (1) simulate proofs and (2) extract knowledge.1

An appealing naive approach to realizing UC-secure adaptive OT would be
to modify the efficient standard-model protocol of Camenisch et al. [10] by sim-
ply replacing rewinding-based proofs with the non-interactive proof techniques of
Groth and Sahai [24]. Unfortunately, this is non-trivial for two reasons. First, the
Groth-Sahai techniques provide broad support for non-interactive, witness in-
distinguishable proofs of algebraic assertions in bilinear groups, but only provide
non-interactive, zero-knowledge proofs for a restricted class of algebraic asser-
tions. Unfortunately, the proof statements required by [10] fall outside of this
class, and it does not seem easy to rectify this problem. Secondly, the protocol
of [10] requires some form of extraction (e.g., extracting the chosen index from
the adversarial Receiver or extracting the secret encryption keys from the adver-
sarial Sender) for proofs containing elements of Zp; unfortunately, Groth-Sahai
proofs of knowledge are f -extractable (but not fully extractable), where only
some one-way function of the witness, f(w), can be extracted (e.g., gw) and not
the witness w itself. Dealing with this limitation would necessitate substantial
changes to the CNS protocol.

Instead, our construction starts from scratch. While we follow the “assisted
decryption” framework of the CNS protocol, we are able to do so without the
need for strong q-based decisional assumptions. We instead base the security of
the ciphertexts in our scheme on the Decision Linear assumption [5]. Finally,
since the Groth-Sahai proofs have not yet been shown to be either simulation-
sound or UC in general, we develop techniques that permit UC simulation (even
in the advanced case where multiple receivers interact with a single sender).

2 Definitions

Notation. By OTNk (resp., OTNk×1), we denote a non-adaptive (resp., adaptive)
k-out-of-N oblivious transfer protocol. Let

c
≈ denote computational indistin-

guishability, as defined in [13].

1 Along the same lines, the half-simulation protocols of [28, 20] use a form of oblivious
pseudorandom function evaluation (OPRF) to encrypt and obliviously decrypt the
message database. Unfortunately, the evaluation protocols described in those works
appear vulnerable to selective-failure attacks, and the modifications necessary to
achieve UC security (or full simulation) seem substantial.



Adaptive k-out-of-N Oblivious Transfer. OTNk×1 protocols consist of two
phases: Initialization and Transfer. In the Initialization phase, the Sender com-
mits to the input database M1, . . . ,MN . Subsequently, the Sender and Receiver
engage in up to k Transfers. During the ith Transfer, the Receiver adaptively
selects a message index σi ∈ [1, N ] and engages in a protocol such that it obtains
Mσi

(or ⊥ if the protocol fails) and nothing else, while the Sender learns nothing
about σi. The simulation-based nature of the security definition we use ensures
that protocol failures must occur independently of the message index σi chosen
by the Receiver (capturing the strong selective-failure blindness property [10].)

Universally Composable Security. As in [30], we work in the standard UC
framework with static corruptions, where all parties are modeled as p.p.t. inter-
active Turing machines. Security of protocols is defined by comparing the proto-
col execution to an ideal process for carrying out the desired task. More formally,
there is an environment Z whose task is to distinguish between two worlds: ideal
and real. In the ideal world, “dummy parties” (some of whom may be corrupted
by the ideal adversary S) interact with an ideal functionality F . In the real
world, parties (some of whom may be corrupted by the real world adversary A)
interact with each other according to some protocol π. We refer to Canetti [13,
14] for a fuller description, as well as a definition of the ideal world ensemble
IDEALF,S,Z and the real world ensemble EXECπ,A,Z . We use the established
notion of a protocol π securely realizing an ideal functionality F as:

Definition 1. Let F be a functionality. A protocol π UC-realizes F if for any
adversary A, there exists a simulator S such that for all environments Z,

IDEALF,S,Z
c
≈ EXECπ,A,Z .

Canetti and Fischlin showed that OT cannot be UC-realized without a trusted
setup assumption [15]. Thus, as in [16, 30], we assume the existence of an honestly-
generated Common Reference String (crs), and work in the so-called FCRS-hybrid
model. The functionality is parameterized by a distribution D and a set P of
recipients. For our purposes, P will include the OT Sender and Receiver only.
Here the environment learns about the reference string from the adversary, and
thus the simulator can set up a string with “trapdoor information”, etc.

Figure 2 describes the FCRS functionality and Figure 3 describes the FN×1
OT

functionality.
We briefly mention that there are techniques for designing and analyzing

multiple OT protocols which use a single reference string; i.e., a multi-session
extension. One might worry that if multiple protocols now share some joint
state, then they can no longer be analyzed separately and then composed later.
Fortunately, this is addressed by universal composition with joint state (JUC) [17]
and could be done in our case. A second issue with sharing the reference string
is that we make no guarantee about the security of protocols which use the
same reference string in ways other than those specified by the OT protocol,
and here we explicitly assume that the crs is only available to certain parties.



Functionality FD,PCRS

Upon receiving input (sid, crs) from party P , first verify that p ∈ P;
else ignore the input. If there is no value r recorded, then choose and
record r ← D. Finally send output (sid, crs, r) to P .

Fig. 2. Ideal functionality for the common reference string [14].

Functionality FN×1
OT

FN×1
OT proceeds as follows, parameterized with integers N, ` and running

with an oblivious transfer Sender S, a receiver R and an adversary S.

– Upon receiving a message (sid, sender,m1, . . . ,mN ) from S, where
each mi ∈ {0, 1}`, store (m1, . . . ,mN ).

– Upon receiving a message (sid, receiver, σ) from R, check if a
(sid, sender, . . . ) message was previously received. If no such mes-
sage was received, send nothing to R. Otherwise, send (sid, request)
to S and receive the tuple (sid, b ∈ {0, 1}) in response. Pass (sid, b)
to the adversary, and: If b = 0, send (sid,⊥) to R. If b = 1, send
(sid,mσ) to R.

Fig. 3. Functionality for adaptive Oblivious Transfer, based on the OT2
1 definition

from [16].

This is at odds with the notion that the crs is a “global” entity, however, there
are strong impossibility results for UC-realizing OT in a setting where the crs is
available to everyone (including the environment) and can no longer be crafted
by the simulator. There are models, such as the augmented CRS functionality
FACRS [12], which overcome these impossibility results, but we do not explore
these advanced UC issues with respect to our OT construction in this work.

3 Preliminaries

Bilinear Groups. Let BMsetup be an algorithm that, on input 1κ, outputs the
parameters for a bilinear mapping as γ = (p,G1,G2,GT , e, g ∈ G1, g̃ ∈ G2),
where g generates G1 and g̃ generates G2, the groups G1,G2,GT each have
prime order p, and e : G1 ×G2 → GT .

Symmetric External Diffie-Hellman Assumption (SXDH) [32, 5, 2, 24]:
Let BMsetup(1κ) → γ = (p,G1,G2,GT , e, g, g̃). The SXDH assumption states
that the Decisional Diffie-Hellman problem is hard within both G1 and G2.

Groups where SXDH holds is one of the three settings for Groth-Sahai proofs [24].

Decision Linear Assumption (DLIN) [5]: Let BMsetup(1κ) → (p, G1, G2,
GT , e, g, g̃). For all p.p.t. adversaries Adv, the following probability is strictly



less than 1/2 + 1/poly(κ):

Pr[a, b, c, d $← Zp; f ← gc; f̃ ← g̃c;h← gd; h̃← g̃d;

z0 ← ha+b; z1
$← G1; d← {0, 1} : Adv(γ, g, g̃, f, f̃ , h, h̃, ga, f b, zd) = d].

Note that this is a weaker asymmetric version of the original DLIN assumption
of Boneh, Boyen and Shacham [5], which was set in symmetric groups.

q-Hidden LRSW Assumption: Let BMsetup(1κ) → γ = (p, G1, G2, GT , e,
g, g̃). For all p.p.t. adversaries Adv, the following probability is strictly less than
1/poly(κ):

Pr[s, t $← Zp; S̃ ← g̃s, T̃ ← g̃t;∀i ∈ [1 . . . q], xi, yi
$← Zp, bi ← gyi , b̃i ← g̃yi ;

A← Adv(γ, S̃, T̃ , {b1, bs+x1st
1 , bx1

1 , bx1t
1 , gx1 , b̃1}, . . . , {bq, bs+xqst

q , bxq
q , b

xqt
q , gxq , b̃q}) :

A = (a1, a2, a3, a4, a5, a6) ∧ x /∈ {x1, . . . , xq} ∧ x ∈ Z∗p ∧ a1 ∈ G1∧
a2 = as+xst1 ∧ a3 = ax1 ∧ a4 = axt1 ∧ a5 = gx ∧ e(a1, g̃) = e(g, a6)].

Related formulations of the above assumption in an oracle-setting, where the
xi values are chosen dynamically by Adv, are the LRSW assumption which was
introduced by Lysyanskaya et al. [27] and the Strong LRSW assumption of Ate-
niese et al. [1]. We eliminate the oracle and instead give q random tuples, which
are also slightly changed. In the full version of this work [23], we show that the
above assumption admits a proof in Shoup’s generic group model [33].

3.1 Groth-Sahai Proofs

The Groth-Sahai proof system [24] permits a variety of efficient non-interactive
proofs of the satisfiability of one or more pairing product equations. For variables
{X}1...m ∈ G1, {Y}1...n ∈ G2 and constants {A}1...n ∈ G1, {B}1...m ∈ G2, ai,j ∈
Zp, and tT ∈ GT , these equations have the form:

n∏
i=1

e(Ai,Yi)
m∏
i=1

e(Xi,Bi)
m∏
i=1

n∏
j=1

e(Xi,Yj)ai,j = tT

Groth and Sahai show how to construct Witness Indistinguishable proof-of-
knowledge of a satisfying witness to such an equation, in prime-order groups
where the SXDH or Decision Linear assumptions hold. The proof system they
describe can be composed over multiple equations involving the same variables.
They point out that in some special cases, their techniques can be strengthened
to provide Zero Knowledge. Unlike the interactive proofs used in [10, 22], the
Groth-Sahai proofs do not use adversarial rewinding in their security analysis.

Groth-Sahai Commitments [24]. At the core of the Groth-Sahai system is
a homomorphic commitment scheme to elements of G1 or G2.2 The public pa-
rameters for the commitment scheme can be generated in two ways. Method
2 As noted in [24, 3] commitment scheme can also be used to commit to elements of

Zp, though we use this only in the context of simulating proofs.



(1) leads to a perfectly-binding commitment scheme, while method (2) leads to
a perfectly-hiding scheme. Note that the two parameter distributions are com-
putationally indistinguishable under the SXDH assumption. When the GS com-
mitment parameters are configured according to method (1), they are equivalent
to an Elgamal encryption of a group element, and can be decrypted by a party
that knows a trapdoor to the commitment parameters. When commitments are
configured according to method (2), a “simulation” trapdoor can be used on
random commitments to open them to any value gx (or g̃x) for known x.

The Proof System. We now describe the proof system at a high level, adopting
some notation and exposition from [3]. For this description we will conceal many
of the underlying details, though the reader can refer to [24, 3] for a more detailed
explanation. The proof system contains the following (possibly probabilistic)
polynomial time algorithms:

GSSetup(γ). On input γ ∈ BMsetup(1κ), outputs a string GS containing pa-
rameters for the proof system. This string embeds binding parameters for
the G-S commitment scheme.

GSProve (GS, S,W ). On input a statement S describing the equation, and a
satisfying witness W ∈ 〈{X}1...m, {Y}1...n〉, outputs a proof π. To formu-
late this proof, a commitment Ĉi is generated for each element in W . The
proof embeds openings to the commitments in such a way that a prover can
ascertain that S is verifiably satisfied, and yet the elements of W remain
hidden.

GSVerify(GS, π). Verifies the proof π (using the commitments and opening val-
ues) and outputs Accept if π is valid, Reject otherwise. (For compactness
of notation, we will specify that π embeds the statement S).

Above we describe the proof system in normal operation. In our security proofs
we will additionally use:

GSExtractSetup(γ). Outputs GS (distributed identically to the output of
GSSetup(γ)) and an extraction trapdoor tdext containing a trapdoor for the
commitment scheme. This trapdoor permits an extraction of a valid witness
from the commitments embedded within a proof.

GSExtract(GS, tdext, π). Given a proof π and the extraction trapdoor, extracts
Xi or Yi from each commitment Ĉi, and outputs the witness W = 〈{X}1...M ,
{Y}1...N 〉 that satisfies the equations.

GSSimulateSetup(γ). Outputs parameters GS′ that are computationally indis-
tinguishable from the output of GSSetup(γ), as well as a simulation trapdoor
tdsim which consists of a simulation trapdoor for the commitment scheme.

GSSimProve(GS′, tdsim, S). Given simulation parameters GS′ and trapdoor
tdsim, outputs a proof π of statement S that such that GSVerify(GS′, π) =
Accept. Note that this algorithm operates on certain restricted classes of
statements (see below).

GS proofs can be defined over multiple pairing product equations. In this case,
satisfiability implies knowledge of a witness for the full set of equations. In our



constructions, we will denote a GS proof statement using the notation of Ca-
menisch and Stadler [11]. For instance, N IWIGS{(a1, a2) : e(a1, a2)e(g, h−1) =
1 ∧ e(a2, g2)e(d−1

2 , a3) = 1} represents a non-interactive Witness Indistinguish-
able proof of knowledge, formed under parameters GS, of a witness W = 〈a1, a2〉
that simultaneously satisfies both listed equations. All values not in enclosed
within the initial ()’s are assumed to be known to the verifier.

Witness Indistinguishability and Zero Knowledge. In general, Groth-
Sahai proofs satisfy a strong definition of Witness Indistinguishability in groups
where the SXDH assumption holds (complete security definitions can be found
in the full version of this work [23]). However, for certain restricted classes of
statements, the proof system can also be used to construct non-interactive Zero
Knowledge (NIZK) proofs. For certain trivial statements, this is simply a matter
of using a WI proof for which a witness can easily be found. E.g., in the special
case where tT = 1 for a pairing product equation, a simulator can always com-
pute a satisfying witness by selecting each Xi or Yi to be g0 or g̃0 respectively.

More practically, Groth and Sahai observe that some non-trivial statements
can be proven in Zero Knowledge by applying the simulation trapdoor for the
Groth-Sahai commitment scheme. This trapdoor allows the simulator to open a
random commitment to any gx or g̃x (for known x), and can be applied such
that the same commitment is opened differently for each equation within the
statement. In some cases, we may need to re-write a statement in order to
construct a ZK proof. For example, consider a proof of the statement e(a, d) =
e(g, h) made on variable a and constants d, g, h. By adding a second variable b
and a further equation, we obtain an equivalent statement which can be proven
using the following zero knowledge proof:

N IZKGS{(a, b) : e(a, d)e(b, h−1) = 1 ∧ e(b, g)e(g−1, g) = 1}

Note that the equivalence holds by the property that b = g is the only valid
solution to the revised equation. However, using the simulation trapdoor we can
open the appropriate commitments such that a = b = g0 in the first equation,
while in the second equation b = g. We will use similar techniques to simulate
the Zero-Knowledge proofs in our constructions.

3.2 Additional Tools

Modified CL Signatures. Our constructions use a variant of the Camenisch-
Lysanskyaya signature scheme [9], altered to operate on messages in G1. Whereas
CL signatures rely on the interactive LRSW assumption to achieve security
against adaptive chosen-message attacks, in the context of our construction we
will require only a non-interactive q-Hidden LRSW assumption to achieve a
weaker property (unforgeability given a set of signatures on random messages).

CLKeyGen(γ, g, g̃). On input γ = (p,G1,G2,GT , e, . . . ) and generators (g, g̃),

select s, t $← Zp and set S̃ ← g̃s, T̃ ← g̃t. Output vk = (γ, g, g̃, S̃, T̃ ), and
sk = (vk , s, t).



CLSignsk (m). On input a message m ∈ G1, select w $← Zp and output the
signature sig = (gw,mw, gwsmwst,mwt, g̃w) ∈ G4

1 ×G2.
CLVerifyvk (sig,m). On input the value m ∈ G1 and sig = (a1, a2, a3, a4, ã5),

verify that e(g, ã5) = e(a1, g̃) ∧ e(m, ã5) = e(a2, g̃) ∧ e(a2, T̃ ) = e(a4, g̃) ∧
e(a3, g̃) = e(a1a4, S̃).

Note that the verification algorithm can be represented as a set of pairing product
equations, and thus it is possible to prove knowledge of a pair (m, sig) using the

GS proof system. To prove knowledge of m, sig, first select y $← Zp, compute
sig′ = 〈a′1, a′2, a′3, a′4, ã′5〉 = 〈ay1, a

y
2, a

y
3, a

y
4, ã

y
5〉 and release the pair a′1, ã

′
5 along

with the following witness indistinguishable proof:

π = N IWIGS{(m, a′2, a′3, a′4) :

e(m, ã′5)e(a′2, g̃
−1) = 1 ∧ e(a′2, T̃ )e(a′4, g̃

−1) = 1 ∧ e(a′3, g̃)e(a′−1
4 , S̃) = e(a′1, S̃)}

The verifier checks both the proof and the fact that e(a′1, g̃) = e(g, ã′5).

Selective-message Secure Boneh-Boyen Signatures. Our constructions
also make use of a weak signature scheme built from the Boneh-Boyen selective-
ID IBE scheme [4] (§4).

BBKeyGen(γ, g1, g̃1). On input γ = (p,G1,G2,GT , e, . . . ) and bases (g1, g̃1),

select α, z $← Zp, g ← g
1/α
1 , g̃ ← g̃

1/α
1 , g2 ← gz, g̃2 ← g̃z, h $← G1. Output

vk = (γ, g, g̃, g1, g2, h, g̃2), and sk = (vk , gα2 ).

BBSignsk (m). On input a message m ∈ G1, select r $← Zp and output the
signature sig = ((mh)rgα2 , g̃

r, gr) ∈ G2
1 ×G2.

BBVerifyvk (sig,m). On input m ∈ G1 and sig = (s1, s̃2, s3), verify that
e(s1, g̃) / e(mh, s̃2) = e(g1, g̃2) and e(g, s̃2) = e(s3, g̃).

We can prove knowledge of a pair (m, sig) as follows. Select y $← Zp and set
sig′ = (s′1, s̃

′
2, s
′
3) = (s1(mh)y, s̃2g̃

y, s3g
y). Output s̃′2, s

′
3 and the WI proof:

π = N IWIGS{(m, s′1) : e(s′1, g̃)e(m, s̃′−1
2 ) = e(h, s̃′2)e(g1, g̃2)}

The verifier checks the proof and the fact that e(g, s̃′2) = e(s′3, g̃).

Double-Trapdoor BBS Encryption. Our OT constructions employ an en-
cryption scheme with a “double-trapdoor” (so that both the simulator in charge
of the crs and the sender in charge of the pk can extract the messages of the
ciphertext.) It is crucial that the holder of either secret key can verify the consis-
tency of the ciphertext with respect to the other secret key (i.e., that decryption
using the other key would reveal the same plaintext.) We use a variant of Boneh-
Boyen-Shacham encryption [5], which has a public consistency check.

Let BMsetup(1κ) → γ = (p,G1,G2,GT , e, g, g̃). Publish global parameters
γ, h, h̃ such that e(g, h̃) = e(g̃, h), and for i ∈ [1, 2] select sk i ← (xi, yi ∈R Zp)
and pk i = (ui, vi, ũi, ṽi)← (h1/xi , h1/yi , h̃1/xi , h̃1/yi). To encrypt a message m ∈



Protocol OTA

OTA is parameterized by the algorithms (OTGenCRS,OTInitialize,
OTRequest, OTRespond, OTComplete).
When S is activated with (sid, sender, 〈M1, . . . ,MN ∈ {0, 1}`〉):
1. S queries FCRS with (sid,S,R) and receives (sid, crs). R then

queries FCRS with (sid,S,R) and receives (sid, crs).a

2. S computes (T, sk) ← OTInitialize(crs,M1, . . . ,MN ), sends (sid, T )
to R and stores (sid, T, sk).

When R is activated with (sid, receiver, σ), and R has previously re-
ceived (sid, T ) and (sid, crs):

1. R runs (Q,Qpriv) ← OTRequest(crs, T, σ), sends (sid, Q) to S and
stores (sid, Qpriv).

2. S gets (sid, Q) from R, runs R ← OTRespond(crs, T, sk,Q), and
sends (sid, R) to R.

3. R receives (sid, R) from S, and outputs
(sid,OTComplete(crs, T,R,Qpriv)).

a FCRS computes computes crs← OTGenCRS(1κ).

Fig. 4. A high-level outline of the OTNk×1 protocol, with details of each algorithm
described in Section 4. We make no explicit mention of the value k, the total transfers
permitted by the Sender, because our protocol does not depend on it. The Sender may
choose to stop answering the Receiver’s queries at any point, in which case OTRespond
outputs “reject” and OTComplete accepts this as the message ⊥.

G1 under pk1/pk2, first select random values r, s ∈ Zp and output the ciphertext
(ur1, v

s
1, u

r
2, v

s
2, h

r+sm). To decrypt a message (c1, . . . , c5) under sk1 = (x1, y1),
output c5/(cx1

1 · c
y1
2 ). To decrypt under sk2 = (x2, y2), output c5/(cx2

3 · c
y2
4 ). Note

that the structure of a ciphertext can be verified using the bilinear map, by
checking that e(c1, ũ2) = e(c3, ũ1) ∧ e(c2, ṽ2) = e(c4, ṽ1) In the full version [23]
we show that scheme above is semantically-secure under the DLIN assumption.

4 A UC-secure Adaptive OT Construction

Our adaptive oblivious transfer protocol, OTNk×1 follows the framework described
in Figure 4. We now describe one instantiation of the algorithms (OTGenCRS,
OTInitialize, OTRequest, OTRespond, OTComplete). In the full version [23], we
provide a second instantiation, under different assumptions.

OTGenCRS(1κ). Given security parameter κ, generate parameters for a bilin-
ear mapping γ = (p,G1,G2,GT , e, g, g̃) ← BMsetup(1κ). Compute GSS ←
GSSetup(γ) and GSR ← GSSetup(γ). Choose a, b, c $← Zp, and set (g1, g2,

h, g̃1, g̃2, h̃) ← (ga, gb, gc, g̃a, g̃b, g̃c). Output crs = (γ, GSS , GSR, g1, g2, h,
g̃1, g̃2, h̃). (In the full version [23], we describe how this common reference
string can be replaced by a common random string.)



OTInitialize(crs,m1, . . . ,mN ). This algorithm is executed by the Sender. On
input a collection of N messages and the crs, it outputs a commitment to
the database, T , for publication to the Receiver, as well as a Sender secret
key, sk. We treat messages as elements of G1, since there exist efficient
mappings between strings in {0, 1}` and elements in G1 (e.g., [6, 1]).
1. Parse crs to obtain GSS , g1, g2, h, g̃1, g̃2, h̃ and γ.
2. Choose random values x1, x2 ∈ Zp.
3. Set (u1, u2)← (h1/x1 , h1/x2), (ũ1, ũ2)← (h̃1/x1 , h̃1/x2).
4. Set (vk1, sk1)← CLKeyGen(γ, u1, ũ1), (vk2, sk2)← CLKeyGen(γ, u2, ũ2)

and (vk3, sk3)← BBKeyGen(γ, u1, ũ1).
5. Set pk ← (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
6. For j = 1, . . . , N encrypt each message mj as:

(a) Select random r, s, t ∈ Zp.
(b) Compute sig1 ← CLSignsk1(ur1), sig2 ← CLSignsk2

(us2), and sig3 ←
BBSignsk3

(ur1u
s
2).

(c) Set Cj ← (ur1, u
s
2, g

r
1, g

s
2, mj · hr+s, sig1, sig2, sig3).

7. Set T ← (pk , C1, . . . , CN ) and sk ← (x1, x2). Output (T, sk).
Each ciphertext Cj above can be thought of as a signcryption where it is
the randomness for each ciphertext that is signed, rather than the plaintext
itself. Each plaintext mj is encrypted under S’s public key u1, u2, as well as a
“key” g1, g2 drawn from crs. This “double-trapdoor” encryption is necessary
for the security proof of the OT scheme.
To verify the format of each ciphertext Cj = (c1, . . . , c5, sig1, sig2, sig3)
in T , anyone can check that CLVerifyvk1

(c1, sig1), CLVerifyvk2
(c2, sig2), and

BBVerifyvk3
(c1c2, sig3) each succeed, and that e(c1, g̃1) = e(c3, ũ1)∧e(c2, g̃2) =

e(c4, ũ2).
OTRequest(crs, T, σ). This algorithm is executed by a Receiver. On input T

generated by the Sender, along with an item index σ, generates a query Q
for transmission to the Sender.
1. Parse T as (pk , C1, . . . , CN ), and ensure that it is correctly formed (see

above). If T is not correctly formed, abort the protocol. (This is only
necessary on the first transfer.)

2. Parse crs to obtain (GSR, h̃), and parse pk as (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
Parse the σth ciphertext Cσ as (c1, . . . , c5, sig1, sig2, sig3).

3. Select random v1, v2 ∈ Zp.
4. Set d1 ← (c1 · uv11 ), d2 ← (c2 · uv22 ), t1 ← hv1 , t2 ← hv2 .
5. Use the Groth-Sahai techniques and reference string GSR to compute

a Witness Indistinguishable proof π that the values d1, d2 pertaining to
the ciphertext Cσ (which the Receiver wishes to have the Sender help
him open) have the correct structure:

π = N IWIGSR
{(c1, c2, t1, t2, sig1, sig2, sig3) :

e(c1, h̃)e(t1, ũ1) = e(d1, h̃) ∧ e(c2, h̃)e(t2, ũ2) = e(d2, h̃) ∧
CLVerifyvk1

(c1, sig1) = 1 ∧ CLVerifyvk2
(c2, sig2) = 1 ∧

BBVerifyvk3
(c1c2, sig3) = 1}



6. Set request Q ← (d1, d2, π), and private state Qpriv ← (Q, σ, v1, v2).
Output (Q,Qpriv).

To explain what is happening in the statement of step (5), first observe
that the signature proofs of knowledge ensure that the values c1, c2 and the
product (c1c2) each correspond to a valid signature held by the Receiver. The
remaining equations ensure that the values d1, d2 correspond to “blinded”
versions of the elements c1, c2. These checks guarantee that the witness used
by the Receiver, and thus the decryption request being made, corresponds
to one of the N ciphertexts published by the Sender.

OTRespond(crs, T, sk,Q). This algorithm is executed by the Sender. If the
Sender does not wish to answer any more requests for the Receiver, then
the Sender outputs the message “reject”. Otherwise, the Sender processes
the Receiver’s request Q as:
1. Parse crs to obtain (GSR, g̃, h̃), and parse T as (pk , C1, . . . , CN ), and sk

as (x1, x2).
2. Parse pk (from T ) as (u1, u2, ũ1, ũ2, vk1, vk2, vk3).
3. Parse Q as (d1, d2, π) and verify proof π using GSR. Abort if check fails.
4. Set a1 ← dx1

1 , a2 ← dx2
2 , and s← a1 · a2.

5. Use the Groth-Sahai techniques and reference string GSS to formulate a
zero-knowledge proof3 that the decryption value s is properly computed:

δ = N IZKGSS
{(a1, a2) : e(a1, ũ1)e(d−1

1 , h̃) = 1

∧ e(a2, ũ2)e(d−1
2 , h̃) = 1 ∧ e(a1a2, h̃)e(s−1, h̃) = 1}

The third equation ensures that s = a1 ·a2, while the first two, since the
values (u1, d1, u2, d2, h̃) are known to both parties, ensure that a1 = dx1

1

and a2 = dx2
2 .

6. Output R← (s, δ).
OTComplete(crs, T,R,Qpriv). This algorithm is executed by the Receiver. On

input R generated by the Sender in response to a request Q, along with
state Qpriv, outputs a message m or ⊥. If R is the message “reject”, then
the Receiver outputs ⊥. Otherwise, the Receiver does:
1. Parse crs to obtain (GSS , h). Parse T as (pk , C1, . . . , CN ), R as (s, δ),

and Qpriv as (Q, σ, v1, v2).
2. Verify proof δ using GSS . If verification fails, output ⊥.
3. Parse Cσ to obtain the first five elements (c1, . . . , c5) and output m =
c5/(s · h−v1 · h−v2). Map this element to a value in {0, 1}` [1].

4.1 Efficiency Analysis

When the protocol in Figure 4 is implemented using the algorithms described
above, we obtain a (k+1/2)-round protocol with communications cost O(N+k),
3 We present a simplified version of this proof above. However, to permit simulation, we

must add a third variable ã3 = h̃ and re-write the proof as N IZKGSS{(a1, a2, ã3) :
e(a1, ũ1)e(d−1

1 , ã3) = 1 ∧ e(a2, ũ2)e(d−1
2 , ã3) = 1 ∧ e(a1a2, ã3)e(s−1, ã3) =

1 ∧ e(u1, ã3) = e(u1, h̃)}. See the full version for details.



where k ≤ N . More concretely, the crs is comprised of 7 elements in G1 and 7
elements of G2, the Sender’s public key contains 5 elements in G1 and 6 elements
in G2. Each of the N ciphertexts in T requires 15 elements in G1 and 3 elements
in G2. Moreover, each item transfer involves transmission of 68 elements of G1

and 38 elements of G2 from Receiver to Sender, and then 20 elements of G1

and 18 elements of G2 from Sender to Receiver. The message space of our OT
protocol is elements in G1, which will be sufficient for transferring a symmetric
encryption key to unlock a file of arbitrary size.

4.2 Security Analysis

Theorem 1. Instantiated with the above algorithms, OTA securely realizes the
functionality FN×1

OT in the FCRS-hybrid model under the SXDH, DLIN, and q-
Hidden LRSW assumptions.

Due to space considerations, we provide only a sketch of Theorem 1 below (the
complete proof can be found in the full version of this work [23]). When either
the Sender or the Receiver is corrupted, we wish to describe a simulator S such
that it can interact with the ideal functionality FN×1

OT (which we’ll denote simply
as F) and the environment Z appropriately; i.e., IDEALF,S,Z

c
≈ EXECOTA,A,Z .

Simulating the case where only S is corrupted. We first consider the case
where the real-world adversary A corrupts the Sender, and thus S must interact
with F as the ideal Sender and with (an internal copy of) A as a real-world
Receiver. Here S does the following:

1. Ask A to begin an OT protocol, and set the crs for these two parties by
running γ = (p,G1,G2,GT , e, g ∈ G1, g̃ ∈ G2) ← BMsetup(1κ), GSS ←
GSSetup(γ), GSR ← GSSetup(γ), selecting random elements a1, a2 ∈ Zp,
and setting ga1

1 = ga2
2 = h (and a corresponding relationship for g̃1, g̃2, h̃).

Set crs = (γ,GSS , GSR, g1, g2, h, g̃1, g̃2, h̃). When the parties query FCRS ,
return (sid, crs).

2. Obtain the database commitment T from A. Verify that T is well-formed,
abort if not. Otherwise, ∀i ∈ [1, N ] use a1, a2 to decrypt each ciphertext
Ci = (c1, . . . , c5, . . . ) as mi = c5/(ca1

3 ca2
4 ). Map each element mi ∈ G1 to a

string in {0, 1}` [1]. Send (sid,S,m1, . . . ,mN ) to F .
3. Upon receiving (sid, request) from F , return OTRequest(crs, T, 1) to A. This

response includes two random values d1, d2 and a non-interactive witness
indistinguishable proof π with respect to GSR ∈ crs that d1, d2 are “blinded”
values corresponding to ciphertext C1. This proof can be performed honestly
and without rewinding.

4. If A issues a “reject” message or responds with anything other than a value
in G1 and a valid NIZK proof, then S tells F to fail the request by sending
message (sid, 0). Otherwise, S sends the message (sid, 1) to F .

The indistinguishability argument here follows from the indistinguishability
of the crs (which is identically distributed to a real crs), the perfect extraction of



the messages in step (2),4 and the Witness Indistinguishability of the GS proof π
issued during each request phase, which guarantees that A (the corrupt Sender)
cannot distinguish a request to decrypt C1 from a request to decrypt any other
valid ciphertext. Thus, S can adequately mimic its response pattern.

Simulating the case where only R is corrupted. Next, we consider the
case where the real world adversary A corrupts the Receiver, and thus S must
interact with F as the ideal Receiver and with (and internal copy of) A as
real-world Receiver. This case requires that the q = N for the q-Hidden LRSW
assumption. Here S does the following:

1. Ask A to begin an OT protocol, and set the crs for these two parties by run-
ning γ = (p,G1,G2,GT , e, g ∈ G1, g̃ ∈ G2)← BMsetup(1κ), (GSS , tdsim)←
GSSimulateSetup(γ) and (GSR, tdext) ← GSExtractSetup(γ). Select random
elements for g1, g2, h, g̃1, g̃2, h̃. Set crs ← (γ,GSS , GSR, g1, g2, h, g̃1, g̃2, h̃).
When the parties query FCRS , return (sid, crs).

2. S must commit to a database of messages for A without knowing the mes-
sages m1, . . . ,mN . Thus, S simply commits to random junk messages, and
sends the corresponding T to A.

3. When A makes a transfer request, S uses tdext to extract the witness W cor-
responding to A’s decryption request from the NIWI proof. (This extraction
is done via opening perfectly-binding commitments which are included in
the WI proof and does not require any rewinding.) This witness includes the
first two elements (c1, c2) of the ciphertext that A is requesting to decrypt,
and from these it is possible to determine the index σ′ of the ciphertext that
A has requested to open.

4. S now sends (sid,R, σ′) to F to obtain the real mσ′ message.
5. Finally, S returns a response to A which opens Cσ′ to mσ′ and then uses
tdsim to simulate an NIZK proof that this opening is correct. The NIZK
proof here is designed in such a way that simulation is always possible and
no rewinding is necessary.

The indistinguishability argument here follows from the indistinguishability
of the crs (from a real crs), the indistinguishability of the “fake” database T ,
the ability to extract witnesses from the NIWI proofs, and the zero-knowledge
property of “fake” NIZK proofs. In particular, note that the N -Hidden LRSW as-
sumption ensures that any decryption request made by the receiver corresponds
to a valid ciphertext from the database T (if A produces a proof π embedding
invalid ciphertext values, we can use A to solve N -Hidden LRSW or the co-CDH
problem [7], which is implied by N -Hidden LRSW).5 Unlike the protocol of [10]

4 Note that a ciphertext that passes the validity check can be represented as C =
(ur1, u

s
2, g

r
1 , g

s
2, h

r+sm, . . . ) for some r, s ∈ Zp, and when (g1, g2, h) have the relation-
ship described above, decryption using a1, a2 always produces m.

5 Note that we are using both an existentially unforgeable signature scheme, as well
as a selective-ID IBE scheme that has been “retasked” as signature scheme. The
latter leads to a signature that is only secure for a polynomial-sized, fixed message



we are able to base the semantic security of the ciphertexts on a standard de-
cisional assumption (the Decision Linear assumption). This is possible because
the full ciphertext can be constructed using only the DLIN input (see the note
on Ciphertext security below). Notice that S is never both simulating and ex-
tracting via the same (subsection of the) common reference string; indeed, we
do not require that the proofs be simulation-sound.

Simulating the remaining cases. When both the Receiver and Sender are
corrupted, S knows the inputs to S and R and can simulate a protocol execution
by generating the real messages exchanged between the two parties. In the case
where neither party is corrupted, then: when S receives messages of the form
(sid, bi) indicating that transfers have occurred, S generates a simulated tran-
script between the honest S and R. In this case, S runs the protocol as specified,
using as S’s input a random database (m̂1, . . . , m̂N ), and (for each transfer), R’s
input σ′ = 1. If in the ith transfer bi = 0 then S’s responds with an invalid R
(the empty string). Else, S returns a valid response as in the protocol.

Ciphertext security. We briefly elaborate on the security of the ciphertexts in
our scheme. To prove security when Receiver is corrupted, we must show that a
ciphertext vector encrypting random messages is indistinguishable from a vector
encrypting the real message database. We argue that this is the case under the
Decision Linear assumption. Let D = (g, g̃, f, f̃ , h, h̃, ga, f b, zd) be a candidate
Decision Linear tuple. We consider a simulation that behaves as follows:

1. Set u1 = g, u2 = f, ũ1 = g̃, ũ2 = f̃ . Select random y1, y2 ∈ Zp, and set
g1 = uy11 , g2 = uy22 (and similarly for g̃1, g̃2). Fix crs ← (γ, GS′S , GS

′
R, g1,

g2, h, g̃1, g̃2, h̃).
2. Generate (vk1, sk1), (vk2, sk2), (vk3, sk3) as in normal operation. Set pk =

(u1, u2, ũ1, ũ2, vk1, vk2, vk3).
3. For i = 1 to N , choose fresh random s, t1, t2 ∈ Zp and set c1 = gasgst1 , c2 =
f bsfst2 . Set Ci:

Ci = (c1, c2, c
y1
1 , c

y2
2 , z

s
dh
s(t1+t2)mj , sig1, sig2, sig3)

where sig1, sig2, sig3 are generated normally using the proper secret keys.
4. Set T ← (pk , C1, . . . , CN ).
5. The simulation answers requests from the malicious Receiver by extracting

from its proof and simulating correct responses (as described above.)

Note that in the above, if zd = ha+b, then the above simulation perfectly encrypts
(m1, . . . ,mN ). However, when zd is a random element of G1, then the ciphertexts
correspond to encryptions of random elements in G1. Now, suppose for the sake
of contradiction, that there exists an environment Z who can distinguish case
one from case two with non-negligible probability ε. Then, it is easy to see that
we can use Z to decide Decision Linear.

space. In the full version, we show that this limitation is acceptable given that we
are signing the product of other messages which have been signed using the stronger
signature scheme. Since there are at most a polynomial number of such products,
the construction is secure.



5 On Multiple Receivers

OT is traditionally described as a two-party protocol between a Sender and Re-
ceiver. We presented our main construction in this setting. However, since we
are motivated by the application of OT to database systems, we would also like
to support applications where multiple users share a single database. Naively
this can be accomplished by requiring the database to run separate OT proto-
col instances with each user. However, this approach can be quite inefficient,
and moreover does not ensure consistency in the database viewed by individ-
ual Receivers. Consider a strengthening of the security definition of FN×1

OT (in
Figure 3) to include the additional requirement that all Receivers “view” the
same database, i.e., the database owner cannot selectively alter the messages in
the database when interacting with different receivers – on query σ from any
receiver, he must return a value in {mσ,⊥}. In the full version of this work [23]
we discuss extensions to our protocol designed to achieve this property.

References

1. Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untraceable RFID
tags via insubvertible encryption. In CCS ’05, pages 92–101. ACM Press, 2005.

2. Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose.
Correlation-resistant storage from keyword searchable encryption. Cryptology
ePrint Archive, Report 2005/417, 2005.

3. Mira Belenkiy, Melissa Chase, Markulf Kolweiss, and Anna Lysyanskaya. Non-
interactive anonymous credentials. In TCC ’08, volume 4948, pages 356–374, 2008.

4. Dan Boneh and Xavier Boyen. Efficient selective-ID secure Identity-Based Encryp-
tion without random oracles. In EUROCRYPT, vol. 3027, pp. 223–238, 2004.

5. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
CRYPTO ’04, volume 3152 of LNCS, pages 45–55, 2004.

6. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
Pairing. In CRYPTO ’01, volume 2139 of LNCS, pages 213–229, 2001.

7. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
Pairing. In ASIACRYPT ’01, volume 2248 of LNCS, pages 514–532, 2001.

8. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure
of secrets. In CRYPTO ’86, volume 263 of LNCS, pages 234–238, 1986.

9. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In CRYPTO ’04, volume 3152, pages 56–72, 2004.

10. Jan Camenisch, Gregory Neven, and abhi shelat. Simulatable adaptive oblivious
transfer. In EUROCRYPT ’07, volume 4515 of LNCS, pages 573–590, 2007.

11. Jan Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In CRYPTO ’97, volume 1296 of LNCS, pages 410–424, 1997.

12. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security
with pre-existing setup. In TCC ’07, volume 4392 of LNCS, pages 61–85, 2007.

13. Ran Canetti. Universally Composable Security: A new paradigm for cryptographic
protocols. In FOCS ’01, pages 136-145, 2001. http://eprint.iacr.org/2000/067.

14. Ran Canetti. Universally composable security: Towards the bare bones of trust.
In Asiacrypt ’07, volume 4833 of LNCS, pages 88–112, 2007.



15. Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO ’01, volume 2139 of LNCS, pages 19–40. Springer, 2001.

16. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In STOC, p.494–503, 2002.

17. Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO
’03, volume 2729 of LNCS, pages 265–281, 2003.

18. Cheng-Kang Chu and Wen-Guey Tzeng. Efficient k-out-of-n oblivious transfer
schemes with adaptive and non-adaptive queries. In PKC, pages 172–183, 2005.

19. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. In CRYPTO ’82, pages 205–210, 1982.

20. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword
search and oblivious pseudorandom functions. In TCC, pages 303-324, 2005.

21. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In STOC ’87, pages
218–229, 1987.

22. Matthew Green and Susan Hohenberger. Blind identity-based encryption and
simulatable oblivious transfer. In ASIACRYPT, volume 4833, pages 265–282, 2007.

23. Matthew Green and Susan Hohenberger. Universally composable adaptive obliv-
ious transfer. Cryptology ePrint Archive, Report 2008/163, 2008. Full version
available at http://eprint.iacr.org/2008/163.

24. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In EUROCRYPT ’08, volume 4965 of LNCS, pages 415–432, 2008.

25. Joe Kilian. Founding cryptography on oblivious transfer. In STOC, p.20–31, 1988.
26. Yehuda Lindell. Efficient fully-simulatable oblivious transfer. In CT-RSA ’08,

volume 4964 of LNCS, pages 52-70, 2008.
27. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym

systems. In SAC ’99, pages 184–199. Springer, 1999.
28. Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries. In

CRYPTO ’99, volume 1666 of LNCS, pages 573–590, 1999.
29. Wakaha Ogata and Kaoru Kurosawa. Oblivious keyword search. Special issue on

coding and cryptography Journal of Complexity, 20(2-3):356–371, 2004.
30. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient

and composable oblivious transfer. In CRYPTO, vol. 5157, pages 554–571, 2008.
31. Michael Rabin. How to exchange secrets by oblivious transfer. Technical Report

TR-81, Aiken Computation Laboratory, Harvard University, 1981.
32. Mike Scott. Authenticated id-based key exchange and remote log-in with simple

token and pin number, 2002. Available at http://eprint.iacr.org/2002/164.
33. Victor Shoup. Lower bounds for discrete logarithms and related problems. In

EUROCRYPT ’97, volume 1233 of LNCS, pages 256–266. Springer, 1997.
34. Andrew Yao. How to generate and exchange secrets. In FOCS, p.162–167, 1986.


