
Basing PRFs on Constant-Query Weak PRFs:
Minimizing Assumptions for Efficient Symmetric

Cryptography?

Ueli Maurer and Stefano Tessaro

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{maurer,tessaros}@inf.ethz.ch

Abstract. Although it is well known that all basic private-key cryp-
tographic primitives can be built from one-way functions, finding weak
assumptions from which practical implementations of such primitives ex-
ist remains a challenging task. Towards this goal, this paper introduces
the notion of a constant-query weak PRF, a function with a secret key
which is computationally indistinguishable from a truly random function
when evaluated at a constant number s of known random inputs, where
s can be as small as two.
We provide iterated constructions of (arbitrary-input-length) PRFs from
constant-query weak PRFs that even improve the efficiency of previous
constructions based on the stronger assumption of a weak PRF (where
polynomially many evaluations are allowed).
One of our constructions directly provides a new mode of operation using
a constant-query weak PRF for IND-CPA symmetric encryption which is
essentially as efficient as conventional PRF-based counter-mode encryp-
tion. Furthermore, our constructions yield efficient modes of operation
for keying hash functions (such as MD5 and SHA-1) to obtain iterated
PRFs (and hence MACs) which rely solely on the assumption that the
underlying compression function is a constant-query weak PRF, which
is the weakest assumption ever considered in this context.

1 Introduction

1.1 Minimizing Assumptions: Constant-Query Weak PRFs

Most cryptographic security proofs are reductions: Under the assumption that a
primitive P exists, the existence of a second primitive P ′ is shown by means of a
concrete construction that uses an implementation of P (usually in a black-box
manner) to implement P ′. For example, P ′ could be a pseudorandom function
(PRF), i.e. a function with a secret key which is computationally indistinguish-
able from a truly random function under arbitrary (adaptive) access. These
functions are central primitives as they provide a direct solution to the problems
of provably secure symmetric encryption and message authentication.
? This research was partially supported by the Swiss National Science Foundation

(SNF), project no. 200020-113700/1.

Ideally, one would like the underlying primitive P to be as weak as possible, as
in practice it is more likely that an efficient and secure candidate is successfully
designed. Also, it is a safe practice to assume that already existing cryptographic
functions (such as block ciphers or compression functions of hash functions) only
fulfill weaker properties than what they have been originally designed for. Some-
times, however, reductions to weak assumptions turn out to be inefficient and
involve large security losses (cf. [14] for a typical example), and hence design-
ers of cryptographic systems are frequently confronted with a trade-off between
the strength of the underlying assumption and the complexity of the resulting
construction.

With the aim of proposing new weak assumptions for the purpose of build-
ing symmetric-key primitives, this paper introduces the notion of constant-
query weak pseudorandom functions: Informally, for some constant s, a func-
tion F : {0, 1}κ × {0, 1}m → {0, 1}n with κ < s · n is an s-query weak PRF
(s-WPRF) if F (K, ·) (under a secret key K) is indistinguishable from a ran-
dom function when evaluated at s independent known random inputs.1 This no-
tion weakens significantly the regular concept of a weak pseudorandom function
(WPRF) [19], where indistinguishability for polynomially many random inputs
is required. We point out that a WPRF is by itself already much weaker than
a PRF, as it possibly exhibits several non-random properties (such as having
weak inputs or being commutative, i.e. F (k, F (k′, x)) = F (k′, F (k, x))). On top
of this, an s-WPRF allows for even more structure: For instance, any s + 1 dis-
tinct inputs x1, . . . , xs+1 and the corresponding outputs F (k, x1), . . . , F (k, xs+1)
under a secret key k may satisfy an easily verifiable relation with no impact on
the pseudorandomness of the function.

In this work, we address the problem of using s-WPRFs to construct PRFs.
Since s-WPRFs imply the existence of one-way functions, a straightforward con-
struction can be obtained using the results of [14, 13]. However, the inefficiency
and the security loss of the resulting reduction make this approach unsuitable
for any practical use, even if the underlying s-WPRF is both highly efficient and
secure. For this reason, this paper deals with the question of finding efficient
constructions of PRFs from s-WPRFs: Surprisingly, we are able to provide con-
structions which are more efficient than existing reductions of PRFs to WPRFs,
while only requiring the underlying function to be an s-WPRF, for s as low as
two. Furthermore, our constructions are iterated and can process inputs of ar-
bitrary input length. This structure makes them well suited to be derived from
properly keyed hash functions with very weak compression functions.

The next two sections are devoted to discussing previous work in the contexts
of building PRFs from WPRFs and of iterated PRFs and MACs, respectively,
and to relating it to our results.

1 The assumption that s-WPRFs exist implies the existence of one-way functions, since
the mapping (k, r) 7→ F (k, r) is easily verified to be one-way as long as κ < s · n.
For κ ≥ s · n, such functions can be constructed unconditionally, e.g. using s-wise
independent functions. (However, optimal unconditional constructions with κ = s ·n
are not known for all parameters m.)

1.2 Construction of PRFs from Weak PRFs

The first construction of a PRF from a WPRF is due to Naor and Reingold [19],
and a further construction was later proposed by Maurer and Sjödin [17]. Both
assume2 a length-preserving underlying function F : {0, 1}n × {0, 1}n → {0, 1}n

(which can be obtained e.g. from a block cipher) and realize a keyed function
mapping `-bit strings to n-bit strings (for a fixed input length `).

The Naor-Reingold Construction [19]. The construction NR` takes an `-
bit input (with ` being a power of two) and its secret key consists of 2` n-
bit strings k1,0, k1,1, . . . , k`,0, k`,1. The computation on input x = (x1, . . . , x`)
proceeds as follows: First, we define y

(log `+1)
i := ki,xi for all i = 1, . . . , `. Then,

for all j = log `, . . . , 1 we compute y
(j)
i := F (y(j+1)

2i−1 , y
(j+1)
2i) for all i = 1, . . . , 2j−1

and finally output y
(1)
1 . In other words, the elements of the key corresponding to

the individual input bits are chosen as the values of the ` leaves of a complete
binary tree which is evaluated in a bottom-up fashion by computing the value of
each inner vertex as F (yl, yr), where yl and yr are the values of its children, and
finally outputting the value of the root. Hence, one evaluation of the construction
needs `

2 + `
4 + · · ·+ `

` = `−1 calls to the underlying function F . A more involved
construction (which we call NRs,`) by the same authors uses a key consisting
of s n-bit values and improves the total number of calls to roughly `/ log s per
evaluation, but only accepts ` and log s to have the form 2j + 2 for some j ≥ 0.
(For both constructions, other input lengths can be achieved through appropriate
paddings.)

The IC-Construction [17]. The construction IC` takes a (κ + 2n)-bit key
consisting of three values k1 ∈ {0, 1}κ and r, r′ ∈ {0, 1}n. (The value r′ can even
be made public.) It first precomputes the values ki := F (ki−1, r

′) for all i =
2, . . . , `. Furthermore, on an `-bit input x = (x1, . . . , x`), it sets y0 := r, and
for all j = 1, . . . , `, computes yj := F (kj , yj−1) if xj = 1, and yj := yj−1

else. Finally, it outputs y`. The construction IC` requires w(x) calls to F when
evaluated on input x, where w(x) ≤ ` is the hamming weight of x. If memory
restrictions do not allow storage of the keys k2, . . . , k`, their values have to be
computed at each evaluation and thus the construction requires (` − 1) + w(x)
calls to F per evaluation, which can be as high as 2`− 1.

A central remark is that in order for all the aforementioned constructions to
be secure PRFs for adversaries issuing q queries, the underlying WPRF must
also be secure when evaluated at q random inputs. (The concrete security bounds
for these constructions are discussed in the full version.) Moreover, in this paper
we will focus on iterated constructions of PRFs and MACs where candidates for
WPRFs may arise from (keyed) compression functions of hash functions, which
have the form F : {0, 1}κ × {0, 1}n → {0, 1}κ (where e.g. κ = 160 and n = 512
for SHA-1). The above constructions can all be extended in a straightforward

2 In fact, the construction of [19] relies on an intermediate primitive, called a synthe-
sizer, but a WPRF F : {0, 1}n × {0, 1}n → {0, 1}n is in fact a synthesizer.

way3 to handle such functions as well, but for the same input length ` the
number of calls would increase considerably if n > κ (roughly, by a factor of dn

κe
with respect to the case n = κ, which is e.g. 4 for SHA-1). This holds even
if we just want κ-bit outputs. Hence, this calls for a construction for which
the condition n > κ does not have a negative impact on the efficiency of the
construction.

1.3 Assumptions in Iterated MACs and PRFs

Bellare et al. [2] proposed two efficient message authentication codes called
HMAC and NMAC, obtained by appropriately keying an iterated4 hash func-
tions H : {0, 1}κ × {0, 1}∗ → {0, 1}κ (where the first input is the initialization
value) as HMAC(k1‖k2, x) := H(IV, k2‖H(IV, k1‖x)) (for a fixed known IV
and |k1|, |k2| both equal to the block length of H) and as NMAC(k1‖k2, x) :=
H(k2,H(k1, x)), respectively.5 (Note that HMAC only requires black-box usage
of H.) Even though alternative designs of MACs exist (such as CBC-MAC [5] and
UMAC [8] to name a few), these constructions have enjoyed widespread usage
due to the large availability of hash function implementations (both in hardware
and in software). From the theoretical standpoint, security of HMAC/NMAC has
been first proved [2] under the assumption that the compression function of H is a
PRF (when keyed through the chaining value), and that H is weakly collision re-
sistant, i.e. it is hard to find two distinct messages x, x′ with H(K, x) = H(K, x′)
for a secret key K (given oracle access to H(K, ·)). Bellare [1] subsequently
proved HMAC/NMAC to be an arbitrary-input-length PRF under the sole as-
sumption of the compression function being a PRF. We point out that the cas-
cade construction by Bellare et al. [3] can also be seen as a way to key a hash
function with a single key to obtain a PRF under the same assumption, at the
expense of using a prefix-free encoding of the inputs. More recently, Fischlin [12]
presented security proofs for HMAC/NMAC (when used as a MAC rather than
as a PRF) relying on non-malleability properties of the underlying compression
function. A further recent line of research [15, 22] has been concerned with in-
creasing the efficiency of the HMAC/NMAC constructions by imposing slightly
stronger requirements on the underlying compression function (i.e. pseudoran-
domness under mild types of related-key attacks).

The bottom line is that in order to deploy one of these constructions in prac-
tice, it is relevant to assess the level of confidence one is willing to put in the given
compression function, but in view of continuous cryptanalytic achievements this

3 One can simply base the above constructions on the function F ′ : (k1‖ . . . ‖kc, r) 7→
F (k1, r)‖ . . . ‖F (kc, r) (possibly chopping some bits) where c = dn/κe (the function
F ′ can be shown to be a WPRF). Note that more involved range-extension techniques
(such as those from [11, 17, 20]) do not work here, as they require a length-preserving
function beforehand.

4 i.e. based on the Merkle-Damg̊ard construction [10, 18], cf. also Section 2
5 Practical implementations usually consider single-keyed versions which, for simplic-

ity, are not discussed here.

is far from being a simple task. This issue motivates us to take steps in the oppo-
site direction: We raise the question of constructing iterated MACs (and PRFs)
with very low requirements on the given compression function, while guarantee-
ing limited impact on the performance when compared with constructions with
stronger underlying security assumptions. In particular, we consider construc-
tions which only require the underlying compression function to be an s-WPRF
(for s as small as two).

1.4 Contributions and Outline of this Paper

This paper initiates the study of constant-query WPRFs, and in particular in-
vestigates the problem of constructing efficient PRFs from these primitives.

– In Section 3, we present our first construction (called the RC-construction)
of an arbitrary-input-length PRF from any s-WPRF F : {0, 1}κ×{0, 1}n →
{0, 1}κ (for some constant s ≥ 2). As a special case of our construction, one
obtains a fixed-input-length PRF which, for input length `, requires ≈ `

log s
calls to F per evaluation, hence improving on earlier constructions despite
the weaker underlying assumption of an s-WPRF.

– Careful instantiation of the RC-construction yields efficient counter-mode
symmetric encryption relying on the sole assumption of an s-WPRF (for
some s ≥ 2), while requiring (on average) only 1 + 1

s−1 calls to F per κ-bit
block of encrypted data and minimal storage overhead. Furthermore, the RC-
construction directly yields constructions of efficient PRGs from s-WPRFs.

– Section 4 presents a further construction, called the nested RC-construction,
which improves the throughput of the RC-construction for long messages
making a novel use of pairwise independence, while still solely relying on the
underlying function being an s-WPRF.

– Finally, Section 5 addresses the problem of deriving our constructions by
keying iterated hash functions (such as SHA-1 or MD5) whose compression
function is an s-WPRF: If minimal (and natural) regularity properties are
additionally guaranteed by the compression function, the keying can be done
in an entirely black-box way. Furthermore, this is the weakest assumption
on the compression function for which modes of operations leading to secure
PRFs and MACs have ever been considered.

The basic tools needed in the rest of the paper are reviewed in Section 2.

2 Preliminaries

2.1 Notational Conventions

Throughout this paper, for a set U , we denote as Un, U∗, and U+ the sets of
sequences s = (u1, u2, . . . , u|s|) of elements of U of length |s| = n, of arbitrary
length with the empty sequence ε, and of arbitrary length |s| without the empty
sequence ε, respectively. (For the case U = {0, 1} we usually talk of strings.) The

notation s‖s′ stands for the concatenation of sequences s and s′, and ur is the
sequence (u, u, . . . , u) consisting of r repetitions of the symbol u ∈ U . Given a
two-argument function F : U × V → Y we denote by F (u, ·) the function V →
Y obtained by fixing the first input to u. Finally, AO(r) denotes the (oracle)
algorithm A which runs on input r with access to the oracle O. Algorithms are
in general randomized, and throughout this paper we fix some RAM model of
computation for these algorithms. In particular, an algorithm A is said to have
running time t if the sum of its description length and the worst-case number of
steps it takes (counting oracle queries as single steps), taken over all randomness
values, all inputs, and all compatible oracles, is at most t.

2.2 Cryptographic Functions

Pseudorandom Functions (PRFs). For some set X (generally X = {0, 1}` or
X = {0, 1}∗) we consider keyed functions of the form F : {0, 1}κ×{0, 1}ρ×X →
{0, 1}n, where the first and the second parameters are called the public and the
private part of the key,6 respectively. The third parameter is the input of F . We
define the PRF advantage of D in distinguishing F from random as the quantity

AdvPRF
F (D) :=

∣∣∣P[
DF (K,R,·)(R) = 1

]
− P

[
DRX ,n(R) = 1

]∣∣∣,
where K and R are independent and uniformly chosen from {0, 1}κ and {0, 1}ρ,
respectively, whereas RX ,n is a random function mapping elements of X to n-bit
strings, i.e. an oracle which associates with each x ∈ X a uniformly-distributed
independent n-bit string. (Whenever X is finite, this is equivalent to a ran-
domly chosen function X → {0, 1}n.) For notational convenience we introduce
the shorthand AdvPRF

F (t, q) to indicate the best advantage taken over all dis-
tinguishers with running time t and making at most q queries. Informally, F is
a PRF if AdvPRF

F (t, q) is “negligible” for all t and q polynomial in some (un-
derstood) security parameter.7 We often consider the case X = {0, 1}∗: Such a
PRF is called an arbitrary-input-length PRF (AIL-PRF), and for this case we
define AdvPRF

F (t, q, `) as the maximal advantage taken over all distinguishers
with running time t making at most q queries each of length at most `.

Message Authentication Codes (MACs). A keyed function F : {0, 1}κ ×
{0, 1}ρ × {0, 1}∗ → {0, 1}n is a MAC if it is “unpredictable” under a secret key.
Formally, for an adversary A, we define its MAC advantage as

AdvMAC
F (A) := P[AF (K,R,·)(R) = (x, y) ∧ F (K, R, x) = y ∧ x new],

where K and R are random independent κ- and ρ-bit strings, respectively,
and “x new” means that x was not queried by A to the given oracle. We de-
fine AdvMAC

F (t, q, `) to be the best advantage of an adversary with running time t

6 We take this unconventional point of view as the constructions of this paper will
allow part of the key to be publicly revealed with no harm to their security, and
there are settings where this is a useful feature.

7 If one considers both parts of the key as a single secret key, this implies that F is a
PRF according to the usual definition considered in the literature.

issuing at most q − 1 queries to F (K, R, ·), each of length at most ` (and the
message x output has also length at most `). It is a well-known fact that a secure
AIL-PRF is also a good MAC, namely AdvMAC

F (t, q, `) ≤ AdvPRF
F (t′, q, `) + 1

2n ,
where t ≈ t′.

Weak Pseudorandom Functions (WPRFs). This notion weakens a PRF
to only withstand attacks where the function is queried on independent random
known inputs. (Sometimes, this is called a known-plaintext attack (KPA) in the
literature.) Formally, for some function g, we let Sg be the oracle that returns
an ordered pair (r, g(r)) for a fresh random r each time it is invoked. Then, for
a keyed function F : {0, 1}κ×{0, 1}m → {0, 1}n we define the WPRF advantage
of the distinguisher D in distinguishing F from random as

AdvWPRF
F (D) :=

∣∣∣P[DSF (K,·)
= 1]− P[DSRm,n

= 1]
∣∣∣ ,

where Rm,n is a random function mapping m-bit strings to n-bit strings and K

is a random κ-bit secret key.8 Additionally AdvWPRF
F (t, q) stands for the best

advantage taken over all distinguishers with running time t making at most q
queries. For a constant s, we call a function F : {0, 1}κ × {0, 1}m → {0, 1}n

with κ < s · n an s-weak pseudorandom function (s-WPRF) if AdvWPRF
F (t, s) is

negligible for all polynomial running times t, and we simply call it a weak pseu-
dorandom function (WPRF) if AdvWPRF

F (t, q) is negligible for all polynomially
bounded t and q.

Cascade and Iterated Hash Functions. For F : {0, 1}κ × {0, 1}n →
{0, 1}κ, it is convenient to define its cascade F ∗ : {0, 1}κ × ({0, 1}n)+ → {0, 1}κ

as the function which, on input k ∈ {0, 1}κ and (x1, . . . , xλ) ∈ ({0, 1}n)+

(with x1, . . . , xλ ∈ {0, 1}n) first computes y0 := k and yi = F (yi−1,mi) for
all i = 1, . . . , λ, and subsequently outputs yλ. In this work we also consider
iterated hash functions [18, 10] H : {0, 1}∗ → {0, 1}κ with underlying compres-
sion function F : {0, 1}κ × {0, 1}n → {0, 1}κ (n is generally called the block
length) and initialization value IV ∈ {0, 1}κ which are defined such that ev-
ery input x ∈ {0, 1}∗ is first padded as (x1, . . . , xλ) ∈ ({0, 1}n)+ and subse-
quently the value F ∗(IV, (x1, . . . , xλ)) is output. In general, the last block xλ

contains some padding bits as well as the length of the message (the so-called
MD-strengthening) to preserve collision resistance of the compression function.
Examples of such functions are those from the MD and the SHA families.

Universal Hashing. Let H : {0, 1}κ × {0, 1}∗ → {0, 1}n, and let δ : N → R+.
We say that H is δ-almost universal (δ-AU) if

pCOLL
H (x, x′) := P[H(K, x) = H(K, x′)] ≤ δ(max{|x|, |x′|})

for all distinct x, x′ ∈ {0, 1}∗, where K is a randomly chosen κ-bit key. We stress
that we extend the standard notion [9, 21] to deal with arbitrary input lengths
8 In contrast to the definitions of PRFs and MACs, here we only consider a fully-secret

key.

by letting δ be a function of the message length. The following lemma extends
to the arbitrary-input-length case the well-known fact that δ-AU hash functions
can be used to extend the domain of PRFs. (We omit its proof which follows the
lines of the fixed-input-length case.)

Lemma 1. Let H : {0, 1}κ × {0, 1}∗ → {0, 1}m be δ-AU, and let F : {0, 1}κ ×
{0, 1}ρ×{0, 1}m → {0, 1}n be a keyed function. Define HF : {0, 1}κ+κ′×{0, 1}ρ×
{0, 1}∗ → {0, 1}n such that HF (k‖k′, r, x) := F (k′, r,H(k, x)). Then we have

AdvPRF
HF (t, q, `) ≤ AdvPRF

F (t′, q) + 1
2 · q

2 · δ(`),

where t′ = t+ q · tH(`), with tH(`) being the time needed to evaluate H on inputs
of length at most `.

3 The Randomized Cascade Construction

3.1 Description and Security of the Construction

In this section, we present the first iterated construction of this paper. It is
reminiscent of the cascade construction of Bellare et al. [3], but only requires the
underlying function F : {0, 1}κ×{0, 1}n → {0, 1}κ to be an s-WPRF with s ≥ 2
being a parameter of the construction. As in [3], the construction relies on the
concept of a prefix-free encoding, which we briefly introduce.

Prefix-free Encodings. For a set X , the efficiently computable function
ENC : X → {1, . . . , s}+ (i.e. outputting a non-empty sequence of elements of
{1, . . . , s}) is a prefix-free encoding scheme if for all distinct x, x′ ∈ X the se-
quence ENC(x) is not a prefix of the sequence ENC(x′). (In particular, ENC must
be injective.) If X = {0, 1}∗, a prefix-free encoding scheme is e.g. obtained by
encoding canonically the input as a sequence in {1, . . . , s − 1}∗, and then ap-
pending the symbol s to the sequence. Other variants exist, but it is generally
desirable that ENC operates on-line, i.e. the encoding is progressively output
while the input bits are provided, without the need to know the entire input
before starting the encoding process. If X = {0, 1}` for some fixed `, then prefix-
freeness is achieved “for free” by encoding all inputs as sequences in {1, . . . , s}∗
of equal length d `

log2 se.

Construction. The randomized cascade construction with parameter s and
input set X (where usually either X = {0, 1}∗ or X = {0, 1}` for a fixed `)
for the function F and prefix-free encoding scheme ENC, denoted RCF

s,X ,ENC,
is a mapping {0, 1}κ × {0, 1}sn × X → {0, 1}κ: It takes a key consisting of a
κ-bit private part k and an sn-bit long public part, which is interpreted as the
concatenation of s n-bit strings r1, . . . , rs. On input x ∈ X , the κ-bit output is
computed through the following two steps:

1. Compute ENC(x) = (m1, . . . ,mλ) ∈ {1, . . . , s}+;
2. Output F ∗(k, (rm1 , . . . , rmλ

)).

F

m1

FF

r1
r2

x PAD

m2 mλ

k

rm1 rm2 rmλ

Fig. 1. The construction RCF
2,ENC

As an example, the construction is depicted in Figure 1 for the special case s = 2.
For notational convenience, we use the shorthands RCF

s,ENC for X = {0, 1}∗ (and
omit the prefix-free encoding when it is generally understood from the context),
as well as RCF

s,` for X = {0, 1}` (where the canonical encoding described above
is used). We also generically refer to the construction as the RC-construction.

Efficiency Comparisons. A fair comparison between the RC-construction
and previous results can be undertaken for the fixed-input-length construc-
tion RCs,` only. In the length-preserving case (κ = n), the construction RC`,s is
comparable to (for the case s = 2) the NR- and the IC-constructions in terms
of calls to F , and outperforms them for s > 2. Furthermore, we obtain the
same space-time trade-off of the NRs,`-construction, but we allow for all possible
values of s. Our construction also limits the effects of possibly very long input
paddings in the NR- and NR-constructions. The efficiency improvement of our
construction is however more evident in the case where n > κ, as even if s = 2,
the number of calls to F of (the extended versions of) all other constructions is
larger at least by a factor dn

κe (the factor is e.g. 4 when instantiating F with
the compression function of SHA-1). Finally, because of the iterated structure,
efficient sequential evaluation of RCs,` requires (beside sufficient storage for the
key material) κ bits only to store the “chaining value”.

Security. In order to give precise security bounds for the RC-construction,
it is convenient to think of the prefix-free encoding ENC in terms of a (pos-
sibly infinite) directed tree T = (V, E) with vertex set V consisting of all se-
quences (m1, . . . ,mj) which are a prefix of ENC(x) for some input x (in particu-
lar, including the encodings themselves and the empty sequence ε). Furthermore,
for each (m1, . . . ,mj) ∈ V there exists a directed edge to (m1, . . . ,mj ,mj+1) for
all mj+1 ∈ {1, . . . , s} such that (m1, . . . ,mj+1) ∈ V. Hence, it is easy to see
that ε is the root of the directed tree and its leaves are exactly the encodings of
the inputs. We provide two examples of such trees in Figure 2.

Every sequence of queries to the RC-construction defines a subtree of T con-
sisting of the paths from the root to the encodings of the queries: For notational
convenience, we define the shorthand L(x1, . . . , xq), for q inputs x1, . . . , xq, to be
the amount of inner vertices (i.e. vertices which are not leaves) of the sub-tree

induced by the evaluations of x1, . . . , xq. It is easy to verify that for RCs,` we
have L(x1, . . . , xq) ≤ 1 + q(d `

log se − 1). Also, for the case where the inputs are
strings with arbitrary length, we define (always with respect to the understood
encoding) L(q, `) := maxx1,...,xq :|xi|≤` L(x1, . . . , xq).

Consequently, one can see an interaction with the RC-construction as a pro-
cess where the tree T = (V, E) defined by ENC is traversed and κ-bit values
are assigned to all visited vertices: While the root ε is assigned a random κ-bit
value, the value of each visited vertex (m1, . . . ,mj) is set to F (z, rmj), with z
being the value of the parent vertex (m1, . . . ,mj−1). A query with input x is an-
swered with the value at the corresponding leaf ENC(x). By the definition of an
s-WPRF, it is easy to see that evaluating F under some given (pseudo-)random
secret key at s independent random inputs produces s pseudorandom outputs,9

and hence intuitively the above process sets the values of all visited vertices to
pseudorandom values (and in particular this holds for the leaves). However, to
formalize this intuition, we have to show that it is indeed possible to recycle the
same values r1, . . . , rs for each invocation of F .

The following theorem formally captures the main security statement for
the RC-construction (for a general input set X).

Theorem 1. Let s ≥ 2, let X be a set, and let ENC : X → {1, . . . , s}+ be a
prefix-free encoding scheme. Furthermore, let F : {0, 1}κ×{0, 1}n → {0, 1}κ. For
all L and all distinguishers D with running time t and with L(x1, x2, . . .) ≤ L
for all possible query sequences x1, x2, . . . ∈ X , there exists a distinguisher D′ =
D′(D) such that

AdvPRF
RCF

s,X ,ENC
(D) ≤ L ·

[
AdvWPRF

F (D′) + s2 · 2−(n+1)
]
,

where D′ makes exactly s queries and has running time t′ = t +O(L · tF), with
tF being the time needed to evaluate F .

In Appendix A we provide a precise description of the distinguisher D′, and refer
the reader to the full version of this paper for the complete proof.

We remark that the term s22−(n+1) is negligible, as s is assumed to be con-
stant. Combined with the above observations on L, the theorem directly yields
the following security bounds for the specialized variants of the RC-construction:

AdvPRF
RCF

s
(t, q, `) ≤ L(q, `) ·

[
AdvWPRF

F (t′, s) + s2 · 2−(n+1)
]
,

AdvPRF
RCF

s,`
(t, q) ≤

[
1 + q

(⌈
`

log s

⌉
− 1

)]
·
[
AdvWPRF

F (t′′, s) + s2 · 2−(n+1)
]
,

with t′ = t +O(L(q, `) · tF) and t′′ = t +O((1 + q (d`/ log se − 1)) · tF).
The most important observation is that all variants of the RC-construction

require F to be only an s-WPRF. A minor positive aspect of the randomized
cascade construction (if compared with other constructions) is the absence of
9 Except in the case where two of the random inputs r1, . . . , rs collide, which happens

with small probability only.

1

ε

4321

11 12 13 14

0

4 53

2

ε

12

21

22

221 222

11 21

a b c

d e

Fig. 2. Example trees associated with prefix-free encodings. Left: Encoding mapping
inputs a, b, c, d, and e to sequences (1, 1), (1, 2), (2, 1), (2, 2, 1), and (2, 2, 2), respec-
tively. Right: Encoding CTRENC used for efficient counter-mode evaluation.

any q-dependent birthday-like term in the above inequalities. Furthermore, if
we assume that F is indeed secure against q queries, the security of the RCs,`-
construction is comparable to the one of the IC`-construction if we assume (in
fact, very optimistically) that the best WPRF-distinguishing advantage grows
linearly in the number of queries, i.e. AdvWPRF

F (t, q) = Θ(q ·AdvWPRF
F (t, s)).

Larger Output Sizes. It is easy to increase the output size of the RC-
construction (if needed) with the addition of a minor number of invocations
of F per evaluation, which is independent of the input length: To obtain a con-
struction RC

F
: {0, 1}κ × {0, 1}ns × X → {0, 1}φκ with output size φ · κ, we

fix φ distinct strings a1, . . . , aφ ∈ X such that L(a1, . . . , aφ) is minimal. Then,
given key with private part k and public part r1, . . . , rs, on input x ∈ X , to com-
pute RC

F
(k, r1‖ . . . ‖rs, x) we first compute k′ := RCF (k, r1‖ . . . ‖rs, x) and fi-

nally output RCF (k′, r1‖ . . . ‖rs, a1)‖ . . . ‖RCF (k′, r1‖ . . . ‖rs, aφ). Security of this
construction can be inferred by the fact that evaluating it at input x accounts to
evaluating at inputs (x, a1), . . . , (x, aφ) a variant of the RC-construction with in-
put set X ×{a1, . . . , aφ} and prefix-free encoding ENC′(x, a) := ENC(x)‖ENC(a).

3.2 Efficient Encryption and PRGs from the RC-Construction

This section addresses two important applications of the RC-construction. For
lack of space, we omit the proofs of the technical claims (which are mostly
corollaries of Theorem 1 or are based on standard techniques).

Symmetric Encryption from the RC-Construction. Given a PRF F :
{0, 1}κ × {0, 1}m → {0, 1}n (in practice usually realized by a block cipher) one
obtains an efficient stateful IND-CPA10 encryption scheme for arbitrary-length
messages by using F in so-called counter-mode, i.e. given a secret key k, we keep
a counter ctr (initially 0), and the plaintext x (padded such that |x| is a multiple
10 Informally, a (stateful or randomized) encryption scheme (E, D) is IND-CPA se-

cure [4, 16] if for a secret key K no polynomial-time adversary can distinguish the
encryptions E(K, x0) and E(K, x1) for any two equally long messages x0, x1 of its
choice even if it can obtain adaptively chosen encryptions E(K, x) for arbitrary x’s.

of n) is encrypted as [ctr, x⊕ (F (k, ctr)‖F (k, ctr + 1)‖ . . . ‖F (k, ctr + |x|/n− 1))]
(and ctr is increased by |x|/n), where integers are canonically mapped to m-
bit strings. Note in particular that we need one call to F for each n-bit block
of encrypted data. Variants of randomized stateless counter-mode encryption
(where one chooses a fresh random counter at every encryption instead of keeping
a state) based on any WPRF F : {0, 1}n × {0, 1}n → {0, 1}n were presented
in [11, 17]. As with a full PRF, these schemes only require one call per n-bit
block of encrypted data, but the underlying WPRF must be secure against as
many queries as the amount of encrypted message blocks.

One can substantially weaken the assumption to an s-WPRF by using the RC-
construction in stateful counter mode (with any encoding scheme). However, a
dramatic increase of efficiency is achieved using a prefix-free encoding scheme
CTRENC : N → {1, . . . , s}+ tailored at this mode of operation, defined as

CTRENC(i) := 1i div s−1‖(2 + (imod s− 1)).

The tree arising from this encoding scheme is illustrated in Figure 2: In particu-
lar, it is clear that the sequence of values RCF

s,CTRENC(0),RCF
s,CTRENC(1), . . . can

be computed very efficiently in an iterated way using only κ+sn bits of memory
and needing approximately 1+ 1

s−1 calls to F per κ-bit block of encrypted data.
Furthermore, the values r1, . . . , rs can be chosen publicly by one communicating
party (provided an authenticated channel is available), hence reducing the cost
of key establishment to the generation of the κ-bit private part of the key. Se-
curity against (adaptive) chosen-ciphertext attacks based on any s-WPRF can
be then obtained by standard techniques appending a MAC of the ciphertext [7]
(e.g. using any of the PRF constructions presented in this paper).

Pseudorandom Generators from s-WPRFs. Recall that a pseudorandom
generator (PRG) is a length-expanding function G : {0, 1}κ → {0, 1}m such that
G(K) is computationally indistinguishable from a random m-bit string under
a random K. Surprisingly, constructing a good PRG from a WPRF (or an s-
WPRF) turns out not to be a straightforward task: In contrast to PRFs, a
WPRF F does not generally allow to find few “good” inputs x1, . . . , xt such
that the mapping k 7→ F (k, x1)‖ . . . ‖F (k, xt) is a PRG. However, one can use
this approach employing the RC-construction as the underlying PRF: For any t
fixed inputs x1, . . . , xt (t > 2) the mapping GF : {0, 1}sn+κ → {0, 1}sn+tκ such
that GF (r1, . . . , rs, k) equals

r1‖ · · · ‖rs‖RCF
s (k, r1‖ . . . ‖rs, x1)‖ · · · ‖RCF

s (k, r1‖ . . . ‖rs, xt)

is a PRG if F is an s-WPRF. (The order of the strings in the concatenation is
irrelevant.) Note that an important advantage is that the strings r1, . . . , rs can
be output as well. For example, given a 2-WPRF F : {0, 1}n×{0, 1}n → {0, 1}n,
the mapping G

F
: {0, 1}3n → {0, 1}6n such that G

F
(k, r0, r1) is set to

r0‖F (F (k, r0), r0)‖F (F (k, r0), r1)‖F (F (k, r1), r0)‖F (F (k, r1), r1)‖r1 (1)

is a length-doubling PRG which requires 6 calls to F . In particular, 3 calls are
necessary in order to input only one both halves of the output. This improves a
construction given in [17], which needed 3 and 4 calls, respectively.

An alternative approach to building a PRF from an s-WPRF F would consist
of first constructing a length-doubling PRG G from F , and subsequently using
the well-known GGM-construction [13] to build a PRF with a κ-bit key and `-bit
inputs by outputting, on input x = (x1, . . . , x`−1, x`) ∈ {0, 1}` and key k, the
κ-bit value Gx`

(Gx`−1(· · ·Gx1(k) · · ·)), where Gi(k) for i = 0, 1 gives the first
and the second half of the output of G, respectively. However, it is not hard to
see that all constructions following this approach turn out to be less efficient
than using the RC-construction directly (e.g. using the PRG of Equation 1 one
needs 3 calls of F per input bit).

4 The Nested Randomized Cascade Construction

Even though the RC-construction can be practically efficient in special instan-
tiation scenarios discussed earlier, its throughput is a major bottleneck in the
case where the construction is used as a PRF (or a MAC) which is invoked at
arbitrary inputs with variable lengths. Furthermore, the prefix-free encoding can
be a limiting factor in the arbitrary-input-length case. This section presents a
construction with better efficiency for long messages (i.e. longer than κ bits) and
with no prefix-freeness requirements. Its core ingredient is a novel use of pairwise
independence.

Pairwise-Independent Mappings. Recall that a mapping11 M : {0, 1}κ ×
{0, 1}m → {0, 1}n is pairwise independent if the values M(K, x) and M(K, x′)
are independent and uniformly distributed for all distinct x, x′ ∈ {0, 1}m under a
random κ-bit key K. Most pairwise-independent mappings satisfy the following
property, which will be central in our construction.

Definition 1. A pairwise-independent mapping M : {0, 1}κ×{0, 1}m → {0, 1}n

is key programmable if there exists a (possibly randomized) algorithm SAMPLE
which on input (x, x′, y, y′) (where possibly x = x′, y = y′) returns a uniformly
chosen element from the set {k |M(k, x) = y, M(k, x′) = y′}.

If M is key programmable, the following two random experiments are equivalent
to sampling a random κ-bit key K: (i) For some m-bit string x, sample Y as a
uniform random n-bit string and K := SAMPLE(x, x, Y, Y); and (ii) For n-bit
strings x 6= x′, sample Y, Y ′ as independent random n-bit strings and K :=
SAMPLE(x, x′, Y, Y ′). Both the last two sampling strategies are used to ensure
that M(K, x) = Y (and possibly M(K, x′) = Y ′) for values Y, Y ′ ∈ {0, 1}n

which, although uniform and independent, are provided externally.
We provide two examples of key-programmable pairwise-independent map-

pings.
11 We use the word mapping, rather than hash function, to stress the fact that m = n

may also hold.

Example 1. Let M be such that given k1, k2 ∈ {0, 1}n and the input x ∈ {0, 1}n,
the output M(k1‖k2, x) equals k1⊕(k2�x), where ⊕ and � are addition and mul-
tiplication of n-bit strings interpreted as elements of the extension field GF (2n).
The unique k1‖k2 such that M(k1‖k2, x) = y and M(k1‖k2, x

′) = y′ (with x 6=
x′) can efficiently be found solving the corresponding system of two equalities.
Is only a single constraint M(k1‖k2, x) = y given, one chooses a random n-bit
string k2 and sets k1 := (k2 � x)⊕ y.

Example 2. An alternative is the mapping M ′ whose (nm + n)-bit key consists
of an (m× n)-binary matrix A and of a n-dimensional binary column vector b,
and on input x the output is Ax+b, where x is interpreted as an m-dimensional
column vector, and addition and multiplications are modulo 2. The function M ′

needs a larger key than M described above, but avoids finite-field multiplications.

Construction. The main idea of the nested RC-construction (called NRC, for
short) is to combine an iterated phase where blocks are processed at a higher rate
(but which satisfies a property weaker than pseudorandomness) with a second
phase where the RCs,κ-construction (for fixed input length κ and a parameter s)
is invoked on the output of the first phase (with independent key material).

More precisely, let M : {0, 1}κ′ × {0, 1}m → {0, 1}n be a key-programmable
pairwise-independent mapping and let F : {0, 1}κ × {0, 1}n → {0, 1}κ be the
given compression function. The construction PIFM : {0, 1}κ+κ′ × {0, 1}∗ →
{0, 1}κ takes a key k‖k′, where k ∈ {0, 1}κ and k′ ∈ {0, 1}κ′ . On input x ∈
{0, 1}∗, it pads12 x as (x1, . . . , xλ), where x1, . . . , xλ ∈ {0, 1}m, and outputs
F ∗(k, (M(k′, x1), . . . ,M(k′, xλ))).

Moreover, given the additional parameter s, we define the nested construc-
tion NRCF

M,s : {0, 1}2κ+κ′ × {0, 1}sn × {0, 1}∗ → {0, 1}κ such that

NRCF
M,s(k1‖k2‖k′, r1‖ . . . ‖rs, x) := RCF

s,κ(k1, r1‖ . . . ‖rs,PIFM (k2‖k′, x)).

It is easy to verify that in order to process a message x, the construction needs
totally

⌈
|x|+1

m

⌉
+ d κ

log se calls to the underlying function F .
It is tempting to increase the throughput of the construction by choosing a

mapping M with m much larger than n. However, all known constructions of
pairwise-independent hash functions (in particular key-programmable ones) re-
quire keys twice as long as the input (rather than the output), and hence such an
approach would entail a much longer key. In fact, we believe the length-preserving
mapping M presented above to be a viable practically efficient solution: This
special case of the construction is depicted in Figure 3.

Security. The following theorem precisely quantifies the security of the NRC-
construction. We give only a compact statement, as well as an overview of the
proof. The complete proof and the concrete reduction arising from it are given
in the full version.
12 According to the canonical padding which pads a string x to have length being a

multiple of m by appending a 1 and sufficiently many 0’s: The resulting padded

string consists hence of
l

|x|+1
m

m
m-bit blocks.

x1 x2 xλ

r1, . . . ,rs

rmdκ/ logserm1

mdκ/ log sem1ka

x

kb

k2 k1

F F F F F

Fig. 3. The construction NRCF
M,s for the special case M(ka‖kb, x) = (ka � x)⊕ kb.

Theorem 2. Let M : {0, 1}κ′ × {0, 1}m → {0, 1}n be a key-programmable
pairwise-independent mapping, and F : {0, 1}κ×{0, 1}n → {0, 1}κ. For all s ≥ 2
and for all t, q, and ` we have

AdvPRF
NRCF

M,s
(t, q, `) ≤

(
1 + q

(
d κ

log se − 1
))

·
(
AdvWPRF

F (t′, s) + s2 · 2−(n+1)
)

+
⌈

`+1
m

⌉
· q2 ·

(
AdvWPRF

F (t′′, 2) + 2−n
)

+ q2 · 2−(κ+1),

where t′ = t +O(q(`
m + κ

log s) · tF) and t′′ = O
(

2`
m · tF

)
, with tF being the time

needed for an evaluation of F .

The core of the proof consists of showing that whenever F is a WPRF for
two-query adversaries, the PI-construction is δ-AU for a suitable function δ to
be computed below. In the following, given two inputs x, x′ with corresponding
padded strings (x1, . . . , xλ) and (x′1, . . . , x

′
λ′) (where without loss of generality

λ < λ′), let λ∗ be maximal with the property that x1 = x′1, . . . , xλ∗ = x′λ∗ (in
particular, λ∗ := 0 if x1 6= x′1), and define the quantity Λ(x, x′) as λ+λ′−λ∗−1 if
(x1, . . . , xλ) is not a prefix of (x′1, . . . , x

′
λ′), and as λ+1 otherwise. In particular,

note that Λ(x, x′) ≤ λ + λ′ ≤ 2 max{λ, λ′} ≤ 2d `+1
m e if |x|, |x′| ≤ `.

The following lemma provides a precise upper bound on the collision proba-
bility of the PI-construction in terms of the WPRF distinguishing advantage of
a distinguisher Dx,x′ (which in particular only depends on x and x′) for F . We
refer the reader to the full version of this paper for its proof.

Lemma 2. For all distinct inputs x, x′ ∈ {0, 1}∗, there exists a two-query dis-
tinguisher Dx,x′ such that

pCOLL
PIFM

(x, x′) ≤ Λ(x, x′) ·
(
AdvWPRF

F (Dx,x′) + 2−n
)

+ 2−κ,

where Dx,x′ has running time O (Λ(x, x′) · tF).

In particular, given some `, let t′′ = O
(

2`
m · tF

)
be the maximal running time of

the distinguisher Dx,x′ taken over all x, x′ with |x|, |x′| ≤ `. We define δ(`) :=
2

⌈
`+1
m

⌉
· (AdvWPRF

F (t′′, 2) + 2−n) + 2−κ. The function PIFM is δ-universal by
Lemma 2, and this implies Theorem 2 using Lemma 1 and Theorem 1.

5 Black-Box Keying of Iterated Hash Functions

The iterated structure of the RC- and the NRC-constructions makes compression
functions ideal candidates for instantiating the underlying s-WPRF. In general,
however, we may be constrained to only have black-box access to an implemen-
tation of an iterated hash function H : {0, 1}∗ → {0, 1}κ (cf. Section 2) with
direct access neither to the initialization value IV nor to the underlying com-
pression function F : {0, 1}κ × {0, 1}n → {0, 1}κ. To overcome this obstacle,
we encode (as in HMAC) an n-bit key as the first block of the input to the
hash function H. More precisely, given the prefix-free encoding scheme ENC :
{0, 1}∗ → {1, . . . , s}+, we consider the construction HRCF

s,ENC which takes a key
with private part k ∈ {0, 1}n and public part r1, . . . , rs ∈ {0, 1}n, and on input x
with ENC(x) = (m1, . . . ,mλ) outputs the value

HRCH
s,ENC(k, r1‖ . . . ‖rs, x) := H(k‖rm1‖ . . . ‖rmλ

),

and analogously we define HRCs,` for inputs of fixed-length ` (using the canonical
encoding to the base s). Furthermore, with M : {0, 1}κ′×{0, 1}m → {0, 1}n being
a key-programmable pairwise-independent mapping, we consider the construc-
tion HNRCH

M,s which takes a key with private part k1, k2 ∈ {0, 1}n, k′ ∈ {0, 1}κ′

and public parts r1, . . . , rs. On input input x (padded as (x1, . . . , xλ)) it outputs

HNRCH
M,s(k1‖k2‖k′, r1‖ . . . ‖rs, x) :=

HRCH
s,κ(k1, r1‖ . . . ‖rs,H(k2‖M(k′, x1)‖ . . . ‖M(k′, xλ))).

In order to lift the security statements of the RC- and the NRC-constructions to
both the HRC- and HNRC-constructions, the assumption that F is an s-WPRF
is not sufficient: First, it is necessary that the κ-bit output F (IV,K) is computa-
tionally indistinguishable from a uniformly-distributed random string of length κ
(under a secret random K); This guarantees that the chaining value obtained
after the first evaluation of F is pseudorandom and can be used as the “key”
for the RC- or the PI-construction. A further problem is due to the fact that
we generally cannot enforce the last n-bit block processed by F to be random
because of the padding introduced by H, and this issue should not destroy the
pseudorandomness of the outputs. To our rescue, however, comes the fact that
each such block is processed keying F with a fresh pseudorandom value: It is
hence enough to additionally guarantee that for an arbitrary fixed n-bit string x
and a random secret κ-bit string K, the string F (K, x) is computationally in-
distinguishable from a random κ-bit string.

We stress that both these extra properties are very weak requirements: In
fact, a good compression function should satisfy them even unconditionally. It
is sufficient, for example, that F (IV, ·) and F (·, x) (for all x ∈ {0, 1}n) are
all (nearly-)regular functions. (We refer the reader to [6] for a discussion on
regularity-properties of hash functions.). With these two additional assumptions
on the compression function F of H, the security bounds of the RC and the NRC-
construction can be lifted to their black-box counterparts. For lack of space, we
omit the proofs, which are very similar to the ones of the original constructions.

6 Conclusions and Open Problems

We have shown that efficient arbitrary-input-length PRFs (and consequently
MACs and encryption schemes) can be constructed under very weak assump-
tions, i.e. weak PRFs where security holds only for a limited number of queries.
Our results provide new insights into the property of weak pseudorandomness.

A natural open question is whether there exist constructions of PRFs from
WPRFs which take explicit advantage of more secure WPRFs (i.e. tolerating
many queries) to achieve more efficient constructions than what we propose
and what was considered in the literature (e.g. processing linearly-many bits
per invocation even for short inputs). We conjecture, however, that this is not
possible. A further direction arising from our work consists of finding further
examples of cryptographic primitives where restricting adversaries in terms of
queries leads to interesting phenomena such as those observed in this paper for
weak pseudorandomness.

References

1. M. Bellare, “New proofs for NMAC and HMAC: Security without collision-
resistance,” in CRYPTO 2006, vol. 4117 of LNCS, pp. 602–619, 2006.

2. M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message
authentication,” in CRYPTO ’96, vol. 1109 of LNCS, pp. 1–15, 1996.

3. M. Bellare, R. Canetti, and H. Krawczyk, “Pseudorandom functions revisited: The
cascade construction and its concrete security,” in FOCS ’96, pp. 514–523, 1996.

4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment
of symmetric encryption,” in FOCS ’97, pp. 394–403, 1997.

5. M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher block chaining
message authentication code,” Journal of Computer and System Sciences, vol. 61,
no. 3, pp. 362–399, 2000.

6. M. Bellare and T. Kohno, “Hash function balance and its impact on birthday
attacks,” in EUROCRYPT 2004, vol. 3027 of LNCS, pp. 401–418, 2004.

7. M. Bellare and C. Namprempre, “Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm,” in ASIACRYPT 2000,
vol. 1976 of LNCS, pp. 531–545, 2000.

8. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, “UMAC: Fast and
secure message authentication,” in CRYPTO ’99, vol. 1666 of LNCS, pp. 216–233,
1999.

9. J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” Journal of
Computer and System Sciences, vol. 18, no. 2, pp. 143–154, 1979.

10. I. B. Damg̊ard, “A design principle for hash functions,” in CRYPTO ’89, vol. 435
of LNCS, pp. 416–427, 1989.

11. I. B. Damg̊ard and J. B. Nielsen, “Expanding pseudorandom functions; or: From
known-plaintext security to chosen-plaintext security,” in CRYPTO 2002, vol. 2442
of LNCS, pp. 449–464, 2002.

12. M. Fischlin, “Security of NMAC and HMAC based on non-malleability,” in CT-
RSA 2008, vol. 4964 of LNCS, pp. 138–154, 2008.

13. O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions,”
in FOCS ’84, pp. 464–479, 1984.

14. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudorandom generator
from any one-way function,” SIAM Journal on Computing, vol. 28, no. 4, pp. 1364–
1396, 1999.

15. S. Hirose, J. H. Park, and A. Yun, “A simple variant of the Merkle-Damg̊ard scheme
with a permutation,” in ASIACRYPT 2007, vol. 4833 of LNCS, pp. 113–129, 2007.

16. J. Katz and M. Yung, “Complete characterization of security notions for proba-
bilistic private-key encryption,” in STOC 2000, pp. 245–254, 2000.

17. U. Maurer and J. Sjödin, “A fast and key-efficient reduction of chosen-ciphertext to
known-plaintext security,” in EUROCRYPT 2007, vol. 4515 of LNCS, pp. 498–516,
2007.

18. R. C. Merkle, “A certified digital signature,” in CRYPTO ’89, vol. 435 of LNCS,
pp. 218–238, 1989.

19. M. Naor and O. Reingold, “Synthesizers and their application to the parallel con-
struction of pseudo-random functions,” Journal of Computer and System Sciences,
vol. 58, no. 2, pp. 336–375, 1999.

20. K. Pietrzak and J. Sjödin, “Range extension for weak PRFs; the good, the bad,
and the ugly,” in EUROCRYPT 2007, vol. 4515 of LNCS, pp. 517–533, 2007.

21. D. R. Stinson, “Universal hashing and authentication codes,” in CRYPTO ’91,
vol. 576 of LNCS, pp. 74–85, 1991.

22. K. Yasuda, “Boosting Merkle-Damg̊ard hashing for message authentication,” in
ASIACRYPT 2007, vol. 4833 of LNCS, pp. 216–231, 2007.

A Description of D′ in the Proof of Theorem 1

We define L + 1 hybrid experiments H0,H1, . . . ,HL where D is given random
inputs r1, . . . , rs and interacts which a (randomized) oracle X → {0, 1}κ that
keeps track of all vertices of the subtree of T induced by the queries of D. In
particular, it assigns to all internal vertices v of this subtree increasing integer
values l(v) according to the order in which they are visited for the first time,
with l(ε) := 0. Furthermore, it associates κ-bit values z(v) with all visited ver-
tices: Initially only z(ε) is defined and set to a random value. In Hi an oracle
query x ∈ X (with ENC(x) = (m1, . . . ,mλ)) by D is answered by looking for
the highest λ∗ such that z(m1, . . . ,mλ∗) is defined and for all j = λ∗ + 1, . . . , λ
assigning to z(m1, . . . ,mj) a fresh random value if l(m1, . . . ,mj−1) < i and
F (z(m1, . . . ,mj−1), rmj) otherwise. Finally, z(m1, . . . ,mλ) is returned to D as
the oracle’s output. Clearly, H0 behaves as the experiment where D interacts
with the RC-construction, whereas HL answers all queries of D randomly.

For all i = 0, . . . , L − 1 one then constructs a distinguisher Di for SF (k,·)

and SRn,κ which first issues s queries to the given oracle, obtaining s pairs
(r1, y1), . . . , (rs, ys) and subsequently simulates the interaction of D with Hi,
except that z(m1, . . . ,mj) is set to ymj whenever l(m1, . . . ,mj−1) = i. Finally,
the distinguisher D′(D) chooses a random i ∈ {0, . . . , L− 1} and runs Di.

We refer the reader to the full version for the concrete analysis of the distin-
guishing advantage of D′.

