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Abstract. This paper studies the application of slide attacks to hash
functions. Slide attacks have mostly been used for block cipher crypt-
analysis. But, as shown in the current paper, they also form a potential
threat for hash functions, namely for sponge-function like structures. As
it turns out, certain constructions for hash-function-based MACs can be
vulnerable to forgery and even to key recovery attacks. In other cases,
we can at least distinguish a given hash function from a random oracle.
To illustrate our results, we describe attacks against the Grindahl-256
and Grindahl-512 hash functions. To the best of our knowledge, this is
the first cryptanalytic result on Grindahl-512. Furthermore, we point
out a slide-based distinguisher attack on a slightly modified version of
RadioGatún. We finally discuss simple countermeasures as a defense
against slide attacks.
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1 Introduction

A hash function H : {0, 1}∗ → {0, 1}n is used to compute an n-bit fingerprint
from an arbitrarily-sized input. Established security requirements for crypto-
graphic hash functions are collision resistance, preimage and 2nd preimage re-
sistance – but ideally, cryptographers expect a good hash function to somehow
behave like a random oracle.

Current practical hash functions , such as SHA-1 or SHA-2 [25, 26], are
iterated hash functions, using a compression function with a fixed-length input,
say h : {0, 1}n+l → {0, 1}n, and the Merkle-Damg̊ard (MD) transformation [14,
24] for the full hash function H with arbitrary input sizes. The core idea is to
split the message M into l-bit blocks M1, . . . ,Mm ∈ {0, 1}l (with some padding,
to ensure all the blocks are of size l-bit), to define an initial value X0, and to
apply the recurrence Xi = h(Xi−1,Mi). The final chaining variable Xi is used as
the hash output. The main benefit of the MD transformation is that it preserves
collision resistance: if the compression function is collision resistant, then so is
the hash function. Recent results, however, highlight some intrinsic limitations of
the MD approach. This includes being vulnerable to multicollision attacks [16],
long second-preimages attacks [19], and herding [18]. Even though the practical
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relevance of these attacks is unclear, they highlight some security issues, which
designers of new hash functions should avoid.

In general, and due to certain structural weaknesses, MD-based hash func-
tions do not behave like a random oracles. Consider, e.g., a secret key K, a mes-
sage M and define a Message Authentication Code MAC(K,M) = H(K||M).
If we model H as a random oracle, this construction meets the expected secu-
rity requirements for a MAC. But for an MD-based hash function H, one can
easily forge authentication codes: given MAC(K,M) = H(K||M), compute a
valid MAC(K,M ||Y ) = H(K||M ||Y ) without knowing the secret key K. Coron
et al. [11] recently discussed a formal model to prove hash functions being free
from such structural weaknesses (but still weak against multicollision attacks).

Our contribution. Newly proposed hash function designs should not suf-
fer from length extension. So for a new and well-designed hash function, the
MAC(K,M) = H(K||M) should be a secure MAC. We will show that this is
not the case for some recently proposed hash functions. In contrast to the case
of MD-based hash functions, where one can forge messages but cannot recover
K, our attacks allow, in general, the adversary to find K (much faster than by
exhaustively searching for it).

Our attacks are an application of slide attacks. These are a classical tool
for block ciphers cryptanalysis, but have so far not been used for hash function
cryptanalysis.

The Targets for Our Attacks. A natural idea for thwarting the MD limi-
tations is to increase the size of the internal chaining variables in the iterated
process, see, e.g., [23]. Using a similar patch, sponge functions [3] followed the
idea to employ a huge internal state (to hold a huge chaining variable) and to
claim a capacity c, typically c� n. This defends against attackers even if these
can perform� 2n/2 operations (but are still restricted to� 2c/2 units of work).
Here n is considered a typical hash function output size (sponge functions may
also provide for arbitrary output sizes, rather than for a fixed n).

Several recent hash functions follow this approach, including Grindahl [22]
and RadioGatún [2]. As far as we know, there are no cryptanalytic attack on
either RadioGatún or the 512-bit version of Grindahl while some collision
attacks for the 256-bit version of Grindahl have already been published [27, 20].

In the current paper, we study the applicability of slide attacks for sponge
functions. Our results indicate that slide attacks can be a serious threat for hash
functions fitting into the sponge framework. On the other hand, if the hash func-
tion designer is aware of slide attacks, we believe it is easy to defend against such
attacks. We give concrete examples by providing attacks against Grindahl [22]
and two slightly tweaked versions of RadioGatún [2]. Our attack applies for
both published flavours of Grindahl, the 256-bit version and the 512-bit version.
As far as we know, this is the first cryptanalytic result for the 512-bit version.



Slide Attacks on a Class of Hash Functions 3

Outline: in Section 2 we recall the slide attacks basics, study the case of hash
functions and focus on the case of sponge functions. Then, in Section 3 we give an
example by applying our results to the Grindahl hash function and discuss the
vulnerability of RadioGatún to slide attacks in Section 4. Finally, we describe
cheap and simple defenses against slide attacks and conclude in Section 5.

2 Slide Attacks

Block ciphers are often designed as a keyed permutation which is applied many
rounds. It is a common belief that increasing the number of rounds makes the
cipher stronger, but this is just true for statistical attacks such as differential or
linear cryptanalysis. Some attacks can be applied even for block cipher variants
with an arbitrary number of rounds. This is true for certain related key attacks,
and for slide attacks. The usual defense is to strengthen the key schedule and the
keyed permutation itself. Related key attacks have been introduced by Biham [5]
and independently by Knudsen [21]. Slide attacks [8] utilize the self-similarity of
the cipher, typically caused by a periodic key schedule. An r round block cipher
with the same keyed permutation F i in each round can be attacked by slide
attacks if F i is a weak permutation, i.e. the key used in F i can be found with a
slid plaintext-ciphertext pair.

2.1 Slide Attacks on Block Ciphers

Slide attacks on block ciphers have been applied to some ciphers with a weak
key schedule (see [8, 17, 12, 9, 28, 6, 29, 15]). The original slide attack [8] works
as follows. An n-bit block cipher E with r rounds is split into b identical rounds
of the same keyed permutation F i for i = {1, . . . , b}. In the simplest case we
have b = r where the key schedule produces the same key in each round3. Thus
we write the cipher as E = F 1 ◦ F 2 ◦ · · · ◦ F b = F ◦ F ◦ · · · ◦ F . A plaintext Pj

is then encrypted as

Pj
F→ X(1) F→ X(2) F→ · · · F→ Cj

where X(i) represents the intermediate encryption value after application of F i

and X(b) = Cj is the corresponding ciphertext. To mount a slide attack one has
to find a slid pair of plaintexts (Pj , Pk), such that

Pk = F (Pj) and Ck = F (Cj) (1)

hold, see also Figure 1.
Slide attacks can only be applied to a small class of ciphers with weak permu-

tations periodic key schedules. A permutation is weak if, given the two equations
in (1), it is easy to extract a non negligible part of the secret key. With 2n/2

3 Note that F i might include more than one rounds of the cipher. If the key schedule
produces identical keys with period p then F i includes p rounds of the original cipher.
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Pj
F→ X(1) F→ X(2) F→ X(3) F→ · · · F→ Cj

Pk
F→ X(1) F→ X(2) F→ · · · F→ X(b−1) F→ Ck

Fig. 1. A slide attack on block ciphers

known plaintext/ciphertext pairs (Pi, Ci) we expect at least one pair satisfying
Pk = F i(Pj) among these texts by the birthday paradox. This gives us a slid
pair. Thus, the classical slide attack allows to recover the unknown key of an
n-bit block cipher using O(2n/2) known plaintexts.

Advanced sliding techniques like complementation slide and sliding with a
twist were introduced by Biryukov and Wagner [9]. These techniques allow to
attack ciphers with a more complex key schedule. The basic concept of comple-
mentation slide is to slide two encryptions against each other where the inputs
to the rounds may have a difference which is canceled out by a difference in the
keys, while an encryption is slid against a decryption using a sliding with a twist
technique. The realigning slide attack [28] allows to slide encryptions with unslid
rounds in the middle of the slide. Biham et al. [6] improved the slide attack to
detect a large amount of slid pairs very efficiently by using the relation between
the cycle structure of the entire cipher and that of the keyed permutation.

2.2 Slide Attacks on Hash Functions

Slide attacks in a hash function setting have attracted very few consideration
in the literature. To our knowledge, the only paper considers an attack on the
internal block cipher from SHA-1 [31]. However, yet no direct way to transform
it into a practical attack on the hash function has been found.

Slide attacks for block ciphers are different in some aspects from those applied
on hash functions. By definition, block cipher computations depend on a secret
key, and slide attacks are typically employed to distinguish a block cipher from
a random permutation – and often for a key recovery attack to follow.

In the hash function case, there is no secret key to recover, just the message to
be hashed, and the adversary is allowed to know this message – or even to choose
it. Typical attacks on hash functions are about finding collisions or preimages –
and it is hard to see how slide attacks could be employed in that context. But even
for hash functions, a slide property that (or which) can be detected with some
significant probability will allow us to differentiate the scheme from a random
oracle. Indeed, with such a property, one can show a non random behavior of the
hash function. This is already an issue, since hash functions are often utilized
to simulate a random oracle as they are considered to be the closest practical
primitive to this theoretical object. Going further, when secret data is used as a
part of the input of the hash function, one can try to recover some information
from it. The natural primitive where hash functions handle secret data are of
course the Message Authentication Codes (MAC), that permit to authenticate a
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message M with a symmetric secret key K. For example, constructions such as
HMAC [1] are implemented in a lot of different applications and make only two
calls to a hash function. HMAC has the advantage to only require the internal
function to be weakly collision resistant and also to provide secure MACs with
MD-based hash functions. Note that a HMAC-based patch is one of the new
domain extension algorithm proposed by Coron et al. [11] to thwart the simple
MD-based MACs attacks. Those attacks are no more than a slide attack on the
MD domain extension algorithm.

Generally, a good hash function H should provide a good MAC with the fol-
lowing computations: MAC(K,M) = H(K||M) or MAC(K,M) = H(K||M ||K).
Just like for block ciphers, if the hash function considered is not protected, one
may be able to recover some non negligible part of the secret key K with a slide
property that can be detected with a good probability. One has to note a work
from Sasaki et al. [32] that attacks prefix, suffix and hybrid approaches for MAC
constructions by using inner collisions for MD4, and a work from Preneel and
Van Oorschot [30] that studies the envelope approache instantiated with MD5.

2.3 Slide attacks on “extended” sponge constructions

We analyze in this section how one can apply slide attacks to sponge-based hash
functions, a newly introduced framework for building hash functions [2, 3]. More
precisely, we use the “extended” sponge functions, a more general framework.

The “extended” sponge framework Assume that H is an iterative hash
function with an internal state of c words of p-bit each and a final output size
of n bits. Let M = M1||M2|| · · · ||M l be the m × p-bit blocks of the message
to hash with M l 6= 0m×p (the message is padded before split into blocks). Let
M i be the message block hashed at each round i and Xi the internal state after
proceeding M i, with X0 = IV . We then have Xi = F (S(Xi−1,M i)), where
F is the round function and S defines how the message is incorporated in the
internal state. Once all the l message blocks have been processed, r blank rounds
(rounds with no message input) are applied Xi = F (Xi−1) and A := X l+r is the
final internal state. Finally, we derivate n output bits by using the final output
function T (X l+r). Such a hash function can be written as

H(M) = X0 F (S(X0,M1))−→ · · · F (S(Xl−1,M l))−→ X l

r times︷ ︸︸ ︷
F (Xl)−→ · · · F (Xl+r−1)−→

A︷ ︸︸ ︷
X l+r

i

T (A)−→ TA,

where TA represents the hash output. One has to note that for efficiency reasons
and since the internal state will be big in practice, F is usually a quite light and
fast round permutation.

This framework is really general and especially more general than the original
sponge function one. More precisely, in the original model, S introduces the
message blocks by XORing them to particular positions of the internal state.
However, in our situation, we can also consider a function S that replaces some
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bits of the internal state by the message bits. We call the former XOR sponge
and the latter overwrite sponge. Moreover, in the original model, the final output
function T continues to apply some blank rounds and extract some bits from the
internal state at the end of each application, until n bits have been received. In
our framework we can also consider the case where the output bits come from a
direct truncation of the final internal state A, and we call it truncated sponge.

There are two security issues, related to the general design of sponge func-
tions. One issue is invertibility : one can run the function F into both directions.
The second issue is self-similarity : all the blank rounds behave identically, and
even a normal round can behave as a blank round if we haveXi−1 = S(Xi−1,M i)
(the effect of adding the message block is void). In the case of a XOR sponge we
need M i = 0 and in the case of an overwrite sponge we require that Mi is equal
to the overwritten part of the internal state.

We will exploit self-similarity for our slide attacks. The idea is that if one
message M1 = M1|| . . . ||M l is the prefix of message M2 = M1|| . . . ||M l||M l+1,
the extended state after processing the first l blocks is the same. Now, if X l+1 =
S(X l,M l+1), processing the next message block M l+1 for the longer message
is the same as the first blank round when hashing the shorter message – the
extended states remain identical. We call these two messages a slid pair : the
two final internal states are just one permutation away B := X l+r+1

j = F (X l+r
i ).

The slide attack is shown in Table 1. Once we were able to generate a slid pair,

Table 1. A slide attack on hash functions

X0
i X0

j

F (S(X0
i , M0)) ↓ ←M0 → ↓ F (S((X0

j , M0))
...

...

F (S(Xl−1
i , M l)) ↓ ←M l → ↓ F (S((Xl−1

j , M l))

Xl
i Xl

j

F (Xl
i) ↓ M l+1 → ↓ F (S((Xl

j , M
l+1))

... Xl+1
j

F (Xl+r−1
i ) ↓ ↓ F (Xl+1

j )

Xl+r
i = A

...

T (A) ↓ ↓ F (Xl+r
j )

TA Xl+r+1
j = B

↓ T (B)
TB

we need to detect it. This fully depends on the output function T . When T
is defined as in the original sponge framework, it is very easy to detect a slid
pair : most of the output bits will be equal, just shifted by one round. If T is
a truncation, we need to do a case by case analysis depending on the strength
of the round function F and the number of bits thrown away. Yet finding and
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detecting a slid pair already allows us to differentiate the hash function from a
random oracle.

We can try to go further, by attacking a MAC with prefix key, i.e. MAC(K,M).
Note that such a construction makes sense as using HMAC based on a sponge
hash function will turn out to be very inefficient. This is due to the fact that
hashing very short messages (required in HMAC by the second hash function
call) is quite slow because of the blank rounds. Therefore, Bertoni et al. [4]
proposed to use prefix-MAC instead of HMAC.

Consider a secret key K. For simplicity and without loss of generality, we
assume some K to be a uniformly distributed (k × m × p)-bit random value
(i.e. k message words long), for some public integer constant k. We will write
K = (K1, . . . ,Km) ∈ ({0, 1}m×p)k. The adversary is allowed to choose message
challenges Ci, while the oracle replies MAC(K,Ci) = H(K||Ci). Ideally, finding
K in such a scenario would require the adversary to exhaustively search over
the set of all possible K ∈ {0, 1}k×m×p, thus taking 2k×m×p−1 units of time
on average. Forging a valid MAC depends on the size of the hash output and
the size of the key, with a generic attack it requires min{2k×m×p−1, 2n} units of
time. A pair of challenges (Ci, Cj), with Ci = C1

i ||C2
i || · · · ||Cl

i and Cj = Ci||Cl
j

is called a slid pair for K if their final internal state are slid by one application
of the blank round function as:

Xk+l+r+1
j = F (Xk+l+r

i )

Provided that one can generate slid pairs and detect them, one can also try
to retrieve the internal state Xk+l+r

i thanks to this information. Again, a case
by case analysis is required here. When Xk+l+r

i is known, one can invert all the
blank rounds and get Xk+l

i . Note that with this information, an attacker can
directly forge valid MACs for any message that contains M as prefix (exactly like
the extension attacks against MD-based hash functions). If the round function
with the message is also invertible, we can continue to invert all the challenge
rounds and get Xk

i . This will allow us to recover some non trivial information
on the secret key K.

A general outline of the attack is as follows:

1. Find and detect slid pairs of messages
2. Recover the internal state
3. Uncover some part of the secret key or forge valid MACs

The padding is very important here : for the XOR sponge functions, an
appropriate padding can avoid slide attacks. Indeed, in that case, we require
M l = 0m×p to get a slid pair. This gives an explanation why the condition
M l 6= 0m×p is needed for the indifferentiability proofs of XOR sponge functions.
However, for the truncated sponge function, a padding is ineffective to avoid
slide attacks.
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3 Applications

3.1 The Grindahl Design

Grindahl is a new hash function introduced by Knudsen et al. in [22], that
fits our extended sponge framework. More precisely, it is an overwrite sponge
function. There are two concrete instantiations of the Grindahl hash function
family: a 256-bit and a 512-bit hash function proposed in the original Grindahl
paper [22]. The parameters of these instantiations in our framework are defined
as follows:

Grindahl-256 [22]. Grindahl-256 is a 256-bit hash function with Nr = 4 and
Nc = 12. The rotation amounts are (ρ0, . . . , ρ3) = (1, 2, 4, 10).

Grindahl-512 [22]. Grindahl-512 is a 512-bit hash function with Nr = 8 and
Nc = 12. The rotation amounts are (ρ0, . . . , ρ7) = (1, 2, . . . , 8).

Note that the internal state of Grindahl can also be viewed as a matrix.
Therefore, we define Nr and Nc to be the number of rows and columns of p-bit
word respectively: we have Nr × Nc = c. For each instance of Grindahl we
have p = 8. The message chunk entering at each round can then be viewed as
one column, thus m = Nr.

For Grindahl the padding consists of 10- and length-padding:

1. 10-padding appends a “1”-bit to the message, followed by as many “0”-bits
as needed to complete the last message block.

2. Length-padding then appends the number of message blocks (not bits!) for
the entire padded message as a 64-bit value.

One effect of the 10-padding is that the last message block before the Length-
padding can be any value, except for the all-zero block. (Or equivalently, any
nonzero block B can be split up into an incomplete block R plus 10-padding:
B = R+ P “10′′ . Note that R is 0 bit long if B = 1000 . . . 0.)

A message M = M1|| . . . ||M l of 32-bit blocks M i in the case of Grindahl-
256, and an incomplete block M l, will be padded to Pad(M) = M1|| . . . ||M l +
P “10′′

1 ||M l+1||M l+2, where P “10′′

1 is the 10-padding. This padded message has
the following properties:

1. The last-but-two message block is not zero: M l + P “10′′

1 6= 032.
2. The final two message blocks contain the 64-bit integer l: (M l+1||M l+2) =
l. (From the Grindahl sample implementation, we conclude that the 32
least significant bits of the 64-bit value are stored in M l+2, while the high-
significant bits go into M l+1.)

Similarly for Grindahl-512, a message M = M1|| . . . ||M l of 64-bit blocks
M i, where M l is also incomplete, is padded to Pad(M) = M1|| . . . ||M l +
P “10′′

1 ||M l+1 has the following properties after padding:

1. The last-but-one message block is not zero: M l + P “10′′

1 6= 064.
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2. The last message block contains the 64-bit integer l: M l+1 = l.

Most hash functions for variably-sized inputs iterate an underlying compression
function for fixed-size inputs. Grindahl is no exception. At the end, the output
will be the first n/(p×Nr) columns of of the final internal state. I.e., Grindahl
is a truncated sponge. Internally, Grindahl uses a state of (Nr × Nc) words
of p bit each. The compression function takes one m-word message block and
an (Nr × Nc)-word internal state as its input and generates new internal state
(again of the size (Nr ×Nc) words, of course), as its output.

Regarding this compression function, Grindahl follows a general three-step
design strategy. Assume a m-word message block, which we write as M i and
a (Nr × Nc)-word internal state, which we write as a Nc tuple of Nr-words:
(X1, . . . , XNc) ∈ ({0, 1}p×Nr )Nc . The incorporation step which concatenates a
message block to the internal state is straightforward:

S : {0, 1}p×Nr × {0, 1}p×Nr×Nc → {0, 1}p×Nr+p×Nr×Nc ,

S(M i, (X1, . . . , XNc) = (M i, X1, . . . , XNc).

The (p × Nr + p × Nr × Nc)-bit output of the incorporating S is the extended
state (X0, . . . , XNc). The second step is a permutation over the extended state:

F : {0, 1}p×Nr+p×Nr×Nc → {0, 1}p×Nr+p×Nr×Nc ,

F (X0, . . . , XNc) = (Y 0, . . . , Y Nc).

F is a permutation based on Rijndael [13] primitives:

F(X0, . . . , XNc)
= MixColumns ◦ ShiftRows ◦ SubBytes ◦AddConstant(X0, . . . , XNc).

MixColumns. Is a linear matrix multiplication of each state matrix column
with a constant vector. This transformation is defined as in the Rijndael spec-
ifications for the 256-bit version of Grindahl.

ShiftRows. This transformation cyclically shifts bytes a number of positions
along each row. Thus, the i-th row is rotated by ρi positions to the right.

SubBytes. The only non-linear part of the permutation, exactly defined as the
SubBytes function of Rijndael.

AddConstant. This function is a simple XORing of the state matrix with a
constant matrix M of the same size, where all bytes are zero except for one.

See [22] for a detailed description of Grindahl. The third operation is as
straightforward as the first one – the first p×Nr-bits of the (p×Nr+p×Nr×Nc)-
bit extended state are truncated away, to get a new p × Nr × Nc-bit internal
state (Y 1, . . . , Y Nc):

R: {0, 1}p×Nr+p×Nr×Nc → {0, 1}p×Nr×Nc , R(Y 0, . . . , Y Nc) = (Y 1, . . . , Y Nc).
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See Figure 2 for a visual illustration of this design strategy. Note that the final
truncation in one iteration and the initial concatenation of the b-bit message
block in the next iteration together are tantamount to simply overwriting the
corresponding column of the extended internal state. The final truncation is
specified as

T: {0, 1}p×Nr+p×Nr×Nc → {0, 1}n, T(Y 0, . . . , Y Nc) = (Y 1, . . . , Y n/(p×Nr)).

Fig. 2. The general design of the Grindahl compression function.

Let α be the internal state matrix with Nc columns and Nr rows, while α̂
represents the extended internal state with Nc + 1 columns and Nr rows. For
a padded message M = M1|| . . . ||Md the Grindahl hash function does for
0 < i < d:

α← R(P (S(M i, α)))

For the last message input Md Grindahl performs α̂ ← P (S(Md, α)). The
truncation R is omitted after the last message input and finally 8 blank rounds
with no message input are performed. These rounds only consists of the P op-
eration on α̂. The final output remains after performing the output truncation
T , which leaves the n-bit output.

3.2 Slide attacks on Grindahl-512

Find slid pairs of messages Building the challenge that generates a slid pair
works as follows. We choose a message M1 = M0

1 ||M1
1 || . . . ||M l−1

1 ||M l
1, where

M l
1 is a non complete block which will be padded. The MAC therefore processes

Pad(K||M1) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 ||PL

1
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where P “10”
1 is the 10-padding to M l

1 and PL
1 is the one-block of the message

length. The value of PL
1 can be chosen by the attacker while modifying the mes-

sage length. For each M1 we build the message M2 = M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 +
P “10”

1 ||R, where R is a random incomplete block. The MAC proceeds

Pad(K||M2) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 ||R+ P “10”

2 ||PL
2

and in some cases we have

Pad(K||M2) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 ||PL

1 ||PL
2 .

The messages M1 and M2 only differ in one additional block at the end. A pair
(M1,M2) will be a slid pair with probability 2−64. Detecting a slid pair is quite
simple. Let TA = A0, . . . , A7 and TB = B0, . . . , B7 be the query output (the
truncated final internal states A and B). Then the condition B = P (A) holds
for a slid pair only. We could not directly apply another blank round to A since
we only know TA and not A. However, TA and TB leave enough information
for detecting a slid pair. We can invert TB one blank round and compare the
resulting bytes with the bytes known from TA. Thus, we can compare 34 bytes
of TA with the known bytes obtained from inverting TB . In this way we can
detect a slide pair since one occurs among 264 pairs. Using the computation de-
scribed above we can filter 28·34 = 2272 false pairs. Figure 3 shows the backward
computation of one blank round.

Fig. 3. Detecting a slid pair of messages for Grindahl-512. Cells in dark gray mark
known bytes while cells in light gray mark unknown bytes. The inverse MixColumns
(MC−1) and the inverse ShiftRows (SR−1) are the only two operations which are
important for our analysis: AddConstant and SubBytes functions leave a known (re-
spectively unknown) bytes known respectively unknown). Therefore we prevent the
other operations.

Recover the internal state A challenge (M1,M2) which produces a slid pair
(TA, TB) can be used to recover the final internal state A (corresponding to the
computation of M1) just before the final truncation. Since the columns A8 to
A12 are unknown, we have to recover 40 bytes. As shown in Figure 3, we can
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directly recover 30 bytes from A by computing TB one blank round backward,
exactly as when we tried to detect slid pairs: we can fully invert the MixColumns
transformation for the eight first columns (where all the bytes are known), then
it is also very easy to invert ShiftRows, SubBytes and AddConstant transforma-
tions. So, when looking at Figure 3, it is clear that the attacker can directly get
30 unknown bytes from A. The remaining 10 unknown bytes can be recovered in
a different way. For each possibility among those bytes (28·10 = 280 possibilities),
we invert all the blank rounds and check if the last added word (the first encoun-
tered when computing backward) is PL

1 . Indeed, when inverting the real internal
state A, we surely come to the insertion of PL

1 and this can be easily detected
since we know this message block and since the message insertion overwrite the
first column of the internal state. Now we are dealing with 280−64 = 216 possi-
bilities only and we have to be careful, since some bytes become undetermined,
if we continue the backward computation. The undetermined bytes are those
which are replaced by the inserted message word during the message input step
(due to the overwriting). However, we don’t need them to discriminate among
the 216 lasting possibilities and we can compute one more round backward to
check if we finally obtain the message word M l

1 + P “10”
1 inserted. This leaves us

the complete internal state A.

Uncover some parts of the secret key or forge valid MACs By knowing
the whole internal state A it is straightforward to invert the blank rounds. With
this information, we can directly generate new valid MACs for messages which
contain M1 as prefix: we just have to continue the computation of the hash
function by ourselves.

We can also try to invert the rounds where known message words are inserted.
Some parts of the internal state are undetermined because of the truncation when
adding message words as mentioned in the previous section. We can guess those
undetermined columns by only keeping those which lead to the good inserted
message words in the first column. This is equal to what we did above to recover
the final internal state. By trying all the possible values of the truncated column,
we can continue going backward and check which one leads to the known correct
values of the message blocks inserted a few rounds before. Some trials will lead
to wrong message blocks inserted and can be discarded. The one leading to the
good values have a good chance to be the real erased bytes. Thus, we can go
backward for all the known message words and recover the erased columns until
we have to stop this procedure when we reach the unknown secret key word.
The last unknown column which can be recovered is the column before inserting
M2

1 . Now, with all those informations we can recover 4 bytes from 8 of the
last unknown message block we encounter (the first when computing backward),
which is part of the secret key. The rest of the secret can be then computed
exhaustively (at a lower cost than brute force without slide attacks) or we can
use a trick4. Indeed, we know that the initial internal state is equal to zero
and one can accelerate the secret recovery with a meet-in-the-middle attack: we
4 If the size of the key is not too big, we don’t even require to do any exhausive search.
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compute forward from the known initial internal state and we compute backward
as we described before.

3.3 Slide attacks on Grindahl-256

Applying the slide attack on Grindahl-256 is a little bit more difficult than on
the 512 bit version, since the message block size is of 32 bit an the padding adds
two additional blocks to the message. This makes it harder to control the message
words and to find a slid pair. We describe the slide attack on Grindahl-256 in
Appendix A.

4 Slide attacks on modified versions of RadioGatún

We are able to use the presented technique to attack slightly modified versions
of RadioGatún [2]. There are two possible modifications. Either we change the
padding rule such that the last message block can also be an all zero input block.
Or we change the message input step such that the input block enters the state
via a replacement of the current state column. I.e., we turn RadioGatún from
an XOR sponge into an overwrite sponge. This modification is inspired by the
message input step of Grindahl.

Consider the first case. The padding rule requires the final message block
always to be non-zero, e.g., by applying the usual 10-padding. For an application
where the message length always happens to be a multiple of the block size,
this padding may appear to be moot. So consider an implementation without
padding. Now the final message block might be all-zero. This gives an easy
way to generate slid pairs (Mi,Mj) of messages – just take any Mi and set
Mj := (Mi||0) (Mi, concatenated by an all-zero message block). In this case,
slide attacks are straightforward. Given for example a MAC such as

H(K||Mi) = Z1
i , Z

2
i , Z

3
i , . . . , Z

k
i and

H(K||Mi||M zero||M zero) = Z3
i , . . . , Z

k
i , Z

k+1
i , Zk+2

i ,

where Zr
i represents the r-th output stream, one can easily forge the MAC

Z2
i , . . . , Z

k+1
i , for the message Mi||M zero.

For the second case (turning RadioGatún into an overwrite sponge), con-
sider a pair of messages Mi = M1

i || . . . ||Md
i and Mj = Mi||Md+1

j , with Mi being
a prefix of Mj and Mj being one block longer. Both final blocks Md

i and Md+1
j

being non-zero are slid with a probability of 2−p×m. It is easy to detect slid pairs
by comparing k − 1 of the output blocks. If the pair (Mi,Mj) is slid, then we
obtain:

H(K||Mi) = Z1
i , Z

2
i , Z

3
i , . . . , Z

k
i and

H(K||Mi||Md+1
j ) = Z2

i , Z
3
i , . . . , Z

k
i , Z

k+1
i

This shows that our slide attack can be used to distinguish some hash functions,
e.g. sponge-based one, from a random oracle if the designer do not take care to
avoid sliding properties of their hash functions.
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Slide-like distinguishing attacks are also applicable for other schemes, i.e. a
modified version of PANAMA even leaves more non-trivial information of the
internal state than our attack on modified RadioGatún.

5 Possible Countermeasures and Conclusion

It only takes a negligible effort to defend hash functions from against slide at-
tacks. Hash function designers, like block cipher designers, must be aware of
possible slide attacks and be on guard for too much self-similarity in their con-
structions. For sponge-based hash functions, a simple patch would be to just
add a nonzero constant just before running the blank rounds and extracting the
hash value. Another option would be to marginally change the blank rounds.
E.g., Grindahl could be changed such that the blank rounds use different ro-
tation amounts (while maintaining the old rotation amounts for all the other
rounds). Well-chosen padding rules also help. In the case of xor sponges, a good
padding even seems to suffice as a defense against slide attacks.

We have studied the applicability of slide attacks for sponge functions. These
are a classical tool for block cipher cryptanalysis, but have not been used for
hash function cryptanalysis so far. Our results indicate that slide attacks can be
a serious threat for sponge-based hash functions. If the hash function designer is
aware of slide attacks, we believe that it is easy to defend against slide attacks.
In our slide attacks on Grindahl and modified version of RadioGatún we
demonstrated the power of these attacks. Our attacks apply for both published
flavours of Grindahl, the 256-bit version and the 512-bit version. As far as we
know, this is the first cryptanalytic result for the 512-bit version.
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A A slide attack on Grindahl-256

A.1 Find slid pairs of messages

Building the challenge that generates a slid pair works as follows. We choose
a message M1 = M0

1 ||M1
1 || . . . ||M l−1

1 ||M l
1, where M l

1 is a non complete block
which will be padded. The MAC therefore processes the hash input

Pad(K||M1) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 ||PL1

1 ||PL2
1 ,

where P “10”
1 is the 10-padding to M l

1 and PL1
1 ||PL2

1 is the two-block of the
message length. Before building the second message, we want the condition

0n 6= PL1
1 = PL2

1

to always hold for M1. Then, for each M1 we build the message M2 = M0
1 ||M1

1 ||
M2

i || . . . ||M
l−1
1 ||M l

1 +P “10”
1 ||R, where R is an incomplete block which, after 10-

padding, is the same as PL1
1 . As PL1

1 is nonzero, such an R exists. In this case,
the hash input is
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Pad(K||M2) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 || R+ P “10”

2 ||PL1
2 ||PL2

2

= K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10”
1 || PL1

1 ||PL2
1 ||PL2

2

This holds because of the conditions fulfilled by PL1
1 and PL2

1 . In other words,
M1 and M2 only differ in an additional block at the end. Such a pair (M1,M2)
is slid with a probability of 2−32. Detecting a slid pair is as simple as in the
case of Grindahl-512. Here also the condition B = P (A) holds for a slid pair
only. TA leaves enough information to compute column B4 by performing one
blank round on TA. In this way the output (TA, TB) of a challenge (M1,M2)
can be checked for a value of B4 what we will expect for a slid pair. We can
further check by using other columns than B4, even if for them only a subspace
of the potential solutions are determined by TA. On the average, we need 231

pairs until we find a slid one. Thus, we need to make about 232 function calls to
obtain and detect a slid pair. Figure 4 shows the backward computation of one
blank round.

Fig. 4. Detecting a slide pair of messages for Grindahl-256. Cells in dark gray mark
known bytes while cells in light gray mark unknown bytes. The inverse MixColumns
(MC−1) and the inverse ShiftRows (SR−1) are the only two operations which are
important for our analysis: AddConstant and SubBytes functions leave a known (re-
spectively unknown) bytes known respectively unknown). Therefore we prevent the
other operations.

A.2 Recover the internal state

A challenge (M1,M2) which produces a slid pair (TA, TB) can be used to recover
the final internal state A (corresponding to the computation of M1) just before
the final truncation. Since the columns A8 to A12 are unknown we have to
recover 20 bytes. We can directly recover 10 bytes from A by computing TB one
blank round backward, exactly as when we tried to detect slid pairs: we can fully
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invert the MixColumns transformation for the eight first columns (where all the
bytes are known), then it is also very easy to invert ShiftRows, SubBytes and
AddConstant transformations. So, when looking at Figure 4, it is clear than the
attacker can directly get 10 unknown bytes from A. The remaining 10 unknown
bytes can be recovered in a different way. For each possibility among those bytes
(28·10 = 280 possibilities), we invert all the blank rounds and check if the last
added word (the first encountered when computing backward) is PL2

1 . Indeed,
when inverting the real internal state A, we surely come to the insertion of the
block PL2

1 and this can be easily detected since we know this message block and
since the message insertion overwrite the first column of the internal state. We
can continue to compute backward with the word PL1

1 even if some parts of the
internal state at this point becomes undetermined due to the truncation when
inserting the message words and thus we only have 248−32 = 216 possibilities.
Finally, we can continue to the message word M l

1 + P “10”
1 which leads to a

recovery of the full internal state A.

A.3 Using only short messages

Note that the above attack required 0n 6= PL1
1 = PL2

1 , i.e., the most significant
and the least significant word of the length field of (K||M1) must the same – and
nonzero. Thus, the smallest possible choice for PL1

1 = PL2
1 is PL1

1 = PL2
1 = 1,

implying a message length (for (K||M), i.e., including the key) of 1+232 blocks.
If dealing with such long messages is an issue, we can modify the attack so use
short messages. The modified attack goes as follows.

We choose a message M1 = M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 +P “10”
1 , where the final

block M l
1 is incomplete. The MAC processes the hash input

Pad(K||M1) = K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1||PL1
1 ||PL2

1 ,

with a length-field PL1
1 ||PL2

1 . Note that PL2
1 holds the 32 least significant bits,

while PL1
1 holds the 32 most significant bits. We assume short messages, thus

PL1
1 = 0n. This time, we want the MAC to process the hash input

Pad(K||M2)

= K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10′′

1 ||PL1
1 ||S + P “10′′

2 ||PL1
2 ||PL2

2

= K||M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10′′

1 ||PL1
1 ||PL2

1 ||PL1
2 ||PL2

2 ,

Thus, M1 and M2 only differ in two additional blocks at the end. Accordingly,
we choose

M2 = M0
1 ||M1

1 || . . . ||M l−1
1 ||M l

1 + P “10′′

1 ||PL1
1 ||S.

As PL2
1 is nonzero, an incomplete block S with S + P “10′′

2 = PL2
1 does exist.

Now we define M1 and M2 as a slid-by-two pair, if, when processing the
shorter message M1, the first two empty rounds behave exactly the last two
nonempty rounds when processing M2. This happens with a probability of
(2−32)2, and on the average, we need 263 pairs to find slid-by-two pair.
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A pair of messages is slid-by-two, if and only if the two corresponding states
A and B satisfy B = P (P (A)). Detecting slid-by-two pairs from T (A) and T (B)
and then recovering the internal state A is slightly more complicated, compared
to “ordinarily” slid-by-one pairs, but still feasible.

A.4 Uncover some parts of the secret key or forge valid MACs

By knowing the whole internal state A it is straightforward to invert the blank
rounds. With this information, we can directly generate new valid MACs for
messages which contain M1 as prefix: we just have to continue the computation
of the hash function by ourselves.

We can also try to invert the rounds where known message words are inserted.
Some parts of the internal state are undetermined because of the truncation
when adding message words. We do not known what was in the first column
before erasing it with a message word, except for the first undetermined column
which is equal to PL2

1 as described above. But we can guess those undetermined
columns by only keeping those which lead to the good inserted message words
in the first column. This is equal to what we did above to recover the final
internal state. By trying all the possibles values the truncated column, we can
continue going backward and check which one leads to the known correct values
of the message blocks inserted a few rounds before. Some tries will lead to wrong
message blocks inserted and can be discarded. The one leading to the good values
have a good chance to be the real erased bytes. Thus, we can go backward for all
the known message words and recover the erased columns until we have to stop
this procedure when we reach the unknown secret key word. The last unknown
column which can be recovered is the column before inserting M3

1 . Now, with all
those informations we can recover 1 bytes from 4 of the last unknown message
block we encounter (the first when computing backward), which is part of the
secret key. The rest of the secret can be then computed exhaustively (at a lower
cost than brute force without slide attacks) or we can use a trick5. Indeed, we
know that the initial internal state is equal to zero and one can accelerate the
secret recovery with a meet-in-the-middle attack: we compute forward from the
known initial internal state and we compute backward as we described before.

5 If the size of the key is not too big, we don’t even require to do any exhausive search.


