A Modular Security Analysis of the TLS
Handshake Protocol

P. Morrissey, N.P. Smart and B. Warinschi

Department Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,
Bristol, BS8 1UB,

United Kingdom.
paulm,nigel,bogdan@cs.bris.ac.uk

Abstract. We study the security of the widely deployed Secure Ses-
sion Layer/Transport Layer Security (TLS) key agreement protocol. Our
analysis identifies, justifies, and exploits the modularity present in the
design of the protocol: the application keys offered to higher level appli-
cations are obtained from a master key, which in turn is derived, through
interaction, from a pre-master key.

Our first contribution consists of formal models that clarify the security
level enjoyed by each of these types of keys. The models that we provide
fall under well established paradigms in defining execution, and security
notions. We capture the realistic setting where only one of the two par-
ties involved in the execution of the protocol (namely the server) has a
certified public key, and where the same master key is used to generate
multiple application keys.

The main contribution of the paper is a modular and generic proof of se-
curity for the application keys established through the TLS protocol. We
show that the transformation used by TLS to derive master keys essen-
tially transforms an arbitrary secure pre-master key agreement protocol
into a secure master-key agreement protocol. Similarly, the transforma-
tion used to derive application keys works when applied to an arbitrary
secure master-key agreement protocol. These results are in the random
oracle model. The security of the overall protocol then follows from proofs
of security for the basic pre-master key generation protocols employed
by TLS.

1 Introduction

The SSL key agreement protocol, developed by Netscape, was made publicly
available in 1994 [22] and after various improvements [20] has formed the bases
for the TLS protocol [18,19] which is nowadays ubiquitously present in secure
communications over the internet. Surprisingly, despite its practical importance,
this protocol had never been analyzed using the rigorous methods of modern
cryptography. In this paper we offer one such analysis. Before describing our
results and discussing their implications we recall the structure of the TLS pro-
tocol (Figure 1). The protocol proceeds in six phases. Through phases (1) and

(2) parties confirm their willingness to engage in the protocol, exchange, and

verify the validity of their identities and public keys (it is assumed that at least

one party (the server) possess a long term public/private key pair (PKg, SKp),

as well as a certificate sigey (PKp) issued by some certification authority CA).

The next four phases, which are the focus of this paper, are as follows.

(3) A pre-master secret s € Spug is obtained using one of a number of proto-
cols that include RSA based key transport and signed Diffie-Hellman key
exchange (which we describe and analyze later in the paper).

(4) The pre-master secret key s is used to derive a master secret m € Sys,
with m = G(s,r4,rp). Here r4, rp are random nonces that the two parties
exchange and G is a key derivation function. The obtained master secret
key is confirmed by using it to compute two MACs of the transcript of the
conversation which are then exchanged.

(5) In the next phase the master key m is used to obtain one or more appli-
cation keys: for each application key, the parties exchange random nonces
n4 and np and compute the shared application key via k = k' || k" «
H(m,na,np). Here, H is a key derivation function. Notice, that each ap-
plication key is actually two keys: one for securing communication from the
client to the server, and one from the server to the client. This is important
to prevent reflection attacks.

(6) Finally the application keys are used in an application (and we exhibit one
possible use for encrypting some arbitrary messages). We emphasise that
many applications can use the same master key by repeated application of
Steps 5 and 6.

The proper use of keys in this last stage had been the object of previous studies [4,
25] and is not part of our analysis.

An interesting aspect of TLS is that the protocols used to obtain the pre-
master secret in Step (3) are very simplistic and on their own insecure in the
terms of modern cryptography. It is the combination of step (3) with those in
(4) and (5) which leads (as we show in this paper) to secure key agreement
protocol in the standard sense. Broadly speaking, our goal is to derive sufficient
security conditions on the pre-master key agreement protocol which would ensure
that the above combination indeed yields a secure key-agreement protocol in a
standard cryptographic sense.

We caution that in our analysis we disregard steps (1) and (2), and therefore
assume an existing PKI which authenticates all public keys in use in the system.
In particular we do not take into account any so-called PKI attacks.

MODELS. Much of the previous work on key agreement protocols in the provable
security community has focused on defining security models and then creating
protocols which meet the security goals of the models. In some sense, we are
taking the opposite approach: we focus on a particular existing protocol, namely
TLS, and develop security models that capture the security levels that the var-
ious keys derived in one execution of the protocol enjoy. The path we take is
also motivated by the lack of models that capture precisely the security of these
keys.

client (Alice) server (Bob)

1. Client Hello Hello
2. Certificate Transfer IDp, PKp

sigo A (PKR)
-—

3. Pre-master Secret -—
Creation s s c.. s
_—
4. Generate and Confirm ra—{0,1}* A
Master Secret m —B rp—{0,1}*
m«—G(s,ra,TB) m«—G(s,ra,TB)
oca<—MAC,, (0 || 7) where op—MAC,,(1]| 7)

7 is the transcript of all

previous messages.

A
7B
if op # MAC,,, (1 || 7) if o4 # MAC,,,(0 || 7)
then abort then abort
5. Generate Application na«—{0,1}" _"A
Keys k' || k" B ng«—{0,1}"
k=k"||k"—H(m,na,ng) k=Fk || k'—H(m,na,np)
6. Application Key y' = E./(m') v’ - m' = Dy (y")
Usage m' =Duy") ey = B

Fig. 1. A general TLS like protocol

A second important aspect of our approach is that unlike in prior work on
key-agreement protocols, we do not regard the protocol as a monolithic structure.
Instead, we identify the structure described above and give security models for
each of the keys that are derived in the protocol. A benefit that follows from
this modular approach is that we split the analysis of the overall protocol to
the analysis of its components, thus making the task of proving security more
manageable.

We first provide a model for pre-master key agreement protocols. The model
is a weakened version of the Blake-Wilson, Johnson and Menezes (BJM) model
[9]. In particular we only require that pre-master key agreement protocols are
secure in a one-way sense (the adversary cannot recover the entire established
key), and that the protocol is secure against man-in-the-middle attacks. In ad-
dition, unlike in prior work, we model the realistic setting where only one of the
parties involved in the protocol is required to possess a certified public key.

Next, we give a security model for master-key agreement protocols which
strengthens the one described above. We still only require secrecy for keys in
the one-wayness sense, but now we ask for the protocol to also be secure against
unknown-key-share attacks. In addition, we introduce key-confirmation as a re-
quirement for master keys.

Finally, via a further extension, we obtain a model for the security of key
agreement protocols. Our model for application key security is rather standard,

and resembles the BJM model: we require for the established key to be indis-
tinguishable from a randomly chosen one, and we give the adversary complete
control over the network, and various corruption capabilities. Our model explic-
itly takes into consideration the possibility that the same master key is used to
derive multiple application keys.

SECURITY ANALYSIS OF THE TLS HANDSHAKE PROTOCOL. Based on the models
that we developed, we give a security proof for the TLS handshake protocol.
In particular, we analyze a version where the MAC sent in step 4 is passed
in the clear (and not encrypted under the application keys as in full TLS.) Tt
is intuitively clear that the security of the full TLS protocol follows from our
analysis. While a direct analysis of the latter may be desirable we choose to trade
immediate applicability of our results to full TLS for the modularity afforded by
our abstraction.

Our proof is modular and generic. Specifically, we show that the protocol
(IT; MKDssi (Mac, G)) obtained by appending to an arbitrary pre-master key
agreement protocol IT the flows in phase (4) of TLS is a secure master-key
agreement protocol in the sense that we define in this paper. The result holds
provided that the message authentication code used in the transformation is
secure and the hash function in the construction is modeled as a random oracle.
Similarly, we show that starting from an arbitrary secure master-key agreement
protocol II, the protocol (IT; AKssi(H)) obtained by appending the flows in
phase (5) of TLS is a secure application-key agreement protocol (provided that
H is modeled as a random oracle).

An important benefit of the modular approach that we employ surfaces at
this stage: to conclude the security of the overall protocol it is sufficient to show
that the individual pre-master key agreement protocols of TLS are indeed secure
(in the weak sense that we put forth in this paper). The analysis is thus more
manageable, and avoids duplicating and rehashing proof ideas, which would be
the case if one was to analyze TLS in its entirety for each distinct method for
establishing pre-master keys.

IMPACT ON PRACTICE. An implication of practical consequence of our analysis
concerns the use of encryption for implementing the pre-master key agreement
protocol of TLS. Currently, the RSA key transport mode of TLS uses a ran-
domized padding mechanism to avoid known problems with vanilla RSA. The
original choice was the encryption scheme from PKCS-v1.0. The exact choice
is historic, but in modern terms was made to attempt to create an IND-CCA
encryption scheme. It turns out that the encryption scheme from PKCS-v1.0 is
not in fact IND-CCA secure. This was exploited in the famous reaction attack
by Bleichenbacher [11] on SSL, where invalid ciphertext messages were used to
obtain pre-master secret keys. Our analysis implies that no randomized padding
mechanism is actually needed, as deterministic encryption suffices to guarantee
the security of the whole protocol.

Importantly, our models do capture security against reaction attacks as long
as the full behaviour of the protocol is specified and analyzed. The key aspect is
that the analysis should include the behaviour of the parties when the messages

that they receive do not follow the protocol (e.g. are malformed). Our analysis
of the premaster key agreement based on encryption schemes (e.g. that based on
RSA) considers and thus justifies the validity of the patch proposed to cope with
reaction attacks, i.e. by ensuring that the execution when malformed packages
are received is indistinguishable from honest executions.

Our models can be used to explicitly capture one-way and mutual authentica-
tion via public-key certificate information. We do not model variants of the stan-
dard TLS protocol which can include password-based authentication or shared
key-based techniques. We leave these extensions for future work.

It is important to observe that our model does not require that the application
keys satisfy a notion of key-confirmation (as we require for the master-keys).
Indeed, the TLS protocol does not ensure this property. However, one may obtain
implicit key confirmation through the use of such keys in further applications. In
some sense, this loss is a by-product of the way we have broken up the protocol.
One of our goals was to show what security properties each of the stages provides,
and therefore we modeled and analyzed the security of the application keys.
However, if one considers Stages 1-4 as the key agreement protocol, and stages
5-6 as the application where the keys are used, then one does obtain an explicit
notion of key confirmation. Hence, the loss of explicit key confirmation in Stage
5 should not be considered a design flaw in TLS.

ON THE USE OF THE RANDOM ORACLE MODEL. In our proofs we assume that
the key derivation function is a random oracle, i.e. an idealized randomness ex-
tractor. As such, the typical disclaimer associated to proofs in the random oracle
model certainly applies, and we caution against over optimism in their interpre-
tation. A natural and important question is whether a standard model analysis
is possible, ideally, assuming that the key derivation function is pseudorandom
(as is the function based on HMAC used in the current specification of TLS).
Unfortunately, indirect evidence indicates that such a result is extremely hard to
obtain. As observed by Jonsson and Kaliski in their analysis of the use of RSA in
TLS [23], the use of the key derivation function in TLS is akin to the use of such
functions in deriving DEM keys under the KEM/DEM paradigm [16]. It is thus
likely that a proof as above would immediately imply an efficient RSA-based
encryption scheme secure in the standard model, thus solving a long-standing
open question in cryptography.

Related Work The work which is closest with ours is the analysis of the
use of RSA in TLS by Jonsson and Kaliski [23]. They consider a very simplified
security model for the master secret key, for the particular case when the protocol
for premaster key is based on encryption. We share the modeling of the key
derivation function as a random oracle, and the observation that deterministic
encryption may suffice for a secure premaster key had also been made there.
However, the present work uses a far more general and modular model for key-
exchange, analyzes several pre-master key agreement protocols, including one
based on DDH which is offered by TLS.

Other analyses of the TLS protocol used Dolev-Yao models, where ideal se-
curity of the underlying primitives is postulated, and thus no guarantees are

offered for the more concrete world. Such analyses include the one carried out
by Mitchel, Shmatikov, and Stern [28] using a model checker, and the one of
Paulson who used the inductive method [30]. Wagner and Schneier analyze var-
ious security aspects of SSL 3.0 [32], but their treatment is informal. Finally,
Bellare and Namprempre [4], and Krawczyk [25] study how to correctly use the
application keys derived via TLS. Their treatment is focused exclusively on the
use of keys, and is not concerned with the security of the entire key agreement
protocol.

The first complexity theoretic model for key agreement was the Bellare-
Rogaway (BR) model [6,7]. The main driving forces of this model were the
works of [8,17]. Since the initial work of Bellare and Rogaway there have been a
number of other models proposed for key-exchange in various applications and
environments [9,10,3,13,14,5,12,1,27,31]. These models can be loosely cate-
gorised into two main groups: those that use simulation based techniques [3, 14,
31], and those closer to the original BR model that use an indistinguishabil-
ity based approach [9, 10, 13,27]. As explained before, our analysis uses a model
that falls in the latter category which, as argued elsewhere [13], has certain draw-
backs but also several important benefits over the simulation based approach.
Certainly, our general understanding of TLS would benefit from an analysis in
a simulation based model, especially one that guarantees compositionality [14].
However, in such settings care must be taken on the use of the UC session iden-
tifiers which must be unique and predetermined. Furthermore, multiple sessions
of TLS use the same long term secret keys which is a setting inherently difficult
to handle in the UC framework. The joint state UC theorem [15] a technical
tool sometimes useful in such situations does not apply to encryption (as used
by encryption based pre-master key derivation). Furthermore, applying the JUC
theorem to protocols that use signatures it requires signing messages/session
identifier pairs, thus obtaining an analysis of a related but different protocol.

Some aspects of other indistinguishability-based models relevant to our work
are the following. In [6] entity authentication and authenticated key distribution
are considered in the two-party symmetric key case where users are modeled as
message driven oracles. The adversary in this case acts as the communications
channel between users. To define security, the notions of an “error-free history”
of [8] and of “matching protocol runs” from [17] are made formal in [6] using the
notion of a matching conversation. We use this notion in our definitions.

Various security attributes are then included in the definition of security by
allowing the adversary to make corresponding queries such as Reveal queries. In
[7] this was developed to model the three party symmetric key case for entity
authentication and key distribution. The models most relevant to our work are
the Blake-Wilson, Johnson and Menezes (BJM) based models [9,10,27]. The
BJM model of [9] extended the BR model, to authenticated key agreement (AK)
and authenticated key agreement with key confirmation (AKC) in the public key
case. The work of [9] uses the notion of a No-Matching condition [6], to define a
clearer separation between AK and AKC protocols and deals with Diffie-Hellman

(DH) like protocols. Our execution models are inspired by the BJM model (while
our security definitions are different.)

Following on from this [10] deals with the case of key transport using public
key encryption (PKE) and key agreement using DH key agreement with digital
signatures (DSS). In [27] a modular proof technique was used in a modified BJM
model to prove security of key agreement protocols relative to a gap assumption.
Indeed, the idea of transforming a one-way security definition into an indistin-
guishability definition occurs also in the generic transform proposed by Kudla
and Paterson [26,27] and our techniques are very similar to theirs.

Finally, an important security model that is related to ours is that of Canetti
and Krawczyk (CK) [13]. In addition to the corruption capabilities that we
consider, the CK model allows the adversary to obtain the entire internal state
of a session and in particular the ephemeral secrets used in sessions. As pointed
out by Choo et al. this type of query is the only essential difference between
the adversarial capabilities in the model of Bellare and Rogaway and that of
Canetti and Krawczyk (see Table 2 of [24]). Clearly, our analysis does not offer
guarantees in the face of such extremely powerful types of adversaries and in
fact it can be easily seen that under such attacks the TLS version that uses the
DDH-based premaster secret key agreement is insecure. It may be possible that
one can demonstrate security of TLS under such stronger attacks by assuming
secure erasures as done for similar protocols [13, 14].

By adopting the style of the BR models over the style of the CK model we
also avoid some of the idiosyncrasies of the latter related to the use of session
identifiers (which need to be unique, and somehow agreed upon in advance by
participating parties) [13,24]. For a further discussion on the use of identifiers
in the CK model versus the BR model see [24].

One other aspect of [13] which is somewhat related to our work is a mod-
ular framework for designing protocols. In the model of [13] one can first de-
velop a secure protocol under the powerful assumption that all communication
is authenticated. Then, a secure protocol in the more realistic setting with no
authenticated communication is obtained by applying a generic transformation
using an authenticator. Obviously, the modular structure of TLS that we observe
and exploit is of a different nature. In particular it does not seem possible to
regard TLS as the result of applying an authenticator to some other protocol.

Acknowledgements The authors would like to thank Caroline Belrose for
various discussions on key agreement protocols during the writing of this paper
and Martin Abadi for interesting insights into various aspects of TLS. The work
described in this paper has been supported in part by the EU FP6 project eCrypt
and an EPSRC grant.

2 A Generic Execution model for Two-Party Protocols

The security models that we use in this paper are based on the earlier work of
Bellare et al. [3,5-7], as refined by BJM [9]. In this section we give a general

description of the common features of these models, and recall some of the
intuition behind them. Later, we specialise the general model for the different
tasks that we consider in the paper.

REGISTERED AND UNREGISTERED USERS. We model a setting with two kinds
of users: registered users (with identities in some set /) and non-registered user
(with identities in some set U’). Each user U € U has a long-term public key
PKy and a corresponding long term private key SKy;. The set U is intended to
model the set of servers in the standard one-way authentication mode of TLS,
the set of identities U” models users that do not have a long term public/private
key pair.

MODELS FOR INTERACTIVE PROTOCOLS EXECUTION. We are concerned with
two-party protocols: interactive programs in which an initiator and a responder
communicate via some communication channel. Each of the two parties runs
some reactive program: each program expects to receive a message from the
communication channel, computes a response, and sends this back to the chan-
nel. We refer to one execution of the program for the initiator (respectively,
responder) as an initiator session (respectively, a responder session). Each party
may engage in multiple, concurrent, initiator and responder sessions.

As standard, we assume an adversary in absolute control of the communi-
cation network: the adversary intercepts all messages sent by parties, and may
respond with whatever message it wants. This situation is captured by consid-
ering an adversary (an arbitrary probabilistic, polynomial-time algorithm) who
has access to oracles that correspond to some (initiator or responder) sessions
of the protocol which the oracle maintains internally. In particular, each ora-
cle maintains an internal state which consists of the variables of the session to
which it corresponds, and additional meta-variables used later to define security
notions. In our descriptions we typically ignore the details of the local variables
of the sessions, and we omit a precise specification of how these sessions are
executed. Both notions are standard. The typical meta-variables of an oracle O
include the following. Variable 7o € {0,1}* U { L} that maintains the transcript
of all messages sent and received by the oracle, and occasionally, other data per-
taining to the execution. Variable rolep € {initiator, responder, L} records the
type of session to which the oracle corresponds. Variable pid, € U keeps track
of the identity of the intended partner of the session maintained by O. Variable
do indicates whether the session had finished successfully, or unsuccessfully. We
specify the values that this variable takes later in the paper. Finally, variable
Yo € {L, corrupted} records whether or not the session had been corrupted by
the adversary.

After an initialisation phase, in which long term keys for the parties are gen-
erated the adversary takes control of the execution which he drives forward using
several types of queries. The adversary can create a new session of user U play-
ing the role of the initiator/responder by issuing a query NewSession(U, role),
with role € {initiator,responder}. User U can be either registered or unregis-
tered. We write T}, for the i’th session of user U. To any oracle O the adversary
can send a message msg using the query Send(O, msg). In return the adversary

receives an answer computed according to the session maintained by O. The
adversary may also corrupt oracles. Later in the paper when we specialise the
general model, we also clarify the different versions of corruptions that can oc-
cur and how are they handled by the oracles. The execution halts whenever the
adversary decides to do so.

To identify sessions that interact with each other we use the notion of match-
ing conversations introduced by Bellare and Rogaway (which essentially states
that the inputs to one session are outputs of the other sessions, and the other
way around) [6].

3 Pre-Master Key Agreement Protocols

In this section we specialise the general model described above for the case of
pre-master key agreement protocols, and analyze the security of the pre-master
key agreement protocols used in TLS.

As discussed in the introduction, the design of our models is guided by the
security properties that the various subprotocols of TLS satisfy. In particular,
we require extremely weak security properties for the pre-master secret key.
Specifically, we demand that an adversary is not able to fully recover the key
shared between two honest parties. In its attack the adversary is allowed to
adaptively corrupt parties and obtain their long term secret key, and is allowed
to check if a certain string s equals the pre-master secret key held by some honest
session. The latter capability models an extremely limited form of reveal queries:
our adversary is not allowed to obtain the pre-master secret key of any of the
sessions, but can only guess (and then check) their values.

The formal model of security for pre-master key agreement protocols extends
the general model in Section 2 and makes only mild assumptions regarding the
syntax of such protocols. Specifically, we assume that the pre-master key belongs
to some space Spys. This space is often the support set of some mathematical
structure such as a group. We require that if ¢ is the security parameter then
#Spums > 2. Furthermore, we assume that the initiator and responder programs
use a variable s € Spyg U {L} that stores the shared pre-master key. The
corresponding variable stored by some oracle O is sp. For pre-master secret
key agreement protocols the internal variable do stores one of the following
values: | (the session had not finished its execution), accepted-pmk (the session
had finished its execution successfully (which in particular means that so holds
some pre-master session key in Spug) or rejected (the session had finished its
execution unsuccessfully). Unless 6o = accepted-pmk we assume so =1.

The corruption capabilities of the adversary discussed above are modeled
using queries Corrupt and Check formally defined as follows. When the adversary
issues a query Corrupt(U) the following actions take place. If U € U then SKy,
is returned to the adversary, and we say that party U had been corrupted. In
all sessions O = I}, for some i € N the value of v is set to corrupted and
no further interaction between these oracles and the adversary may take place.
Additionally, no further queries NewSession(U, role) are permitted.

When the adversary issues the query Check(O, s), for O = II};,i € N, U some
uncorrupted party, and s € Spums, then the answer returned to the adversary
is true, if 0o = accepted-pmk and sp = s, and false otherwise. When a given
oracle is initialized all values for the internal states are set to L. At the end of
a protocol, the role, partner ID, and oracle state (but not the pre-master key)
are recorded in the transcript.

The following definition captures the class of oracles which are valid targets
for the attacker using the notion of “fresh oracles”. These are uncorrupted ora-
cles who have successfully finished their execution, and have a known intended
partner who is also not corrupted.

Definition 1 (Fresh Pre-Master Secret Key Oracle). A pre-master secret
oracle O is said to be fresh if all of the following conditions are satisfied:

(1) vo =1, (2) 00 = accepted-pmk, and (3) 3 V € U such that V is
uncorrupted and pidp = V.

SECURITY GAME FOR PRE-MASTER KEY AGREEMENT PROTOCOLS. We define

the security of a pre-master key agreement protocol IT via the following game

Exec%‘f}PMs(t) between an adversary A and a challenger C:

(1) The challenger, C, generates public/secret key pairs for each user U € U (by
running the appropriate key-generation algorithm on the security parameter

t), and returns the public keys to A.
(2) Adversary A, is allowed to make as many NewSession, Send, Check, and
Corrupt queries as it likes.
(3) At some point A outputs a pair (O*,s*), where O* is some pre-master
secret oracle, and s* € Spus.
We say the adversary A wins if its output (O*, s*) is such that O* is fresh, and
s* = sp+. In this case the output of Exec%\f\ﬁPMS(t) is set to 1. Otherwise the
output of the experiment is set to 0. We write

AdvQ PV () = PrExecQ; ™M (1) = 1],
. .. OW-PMS .- .
for the advantage of A in winning the Execy’;; " (t) game. The probability is
taken over all the random coins used in the game. We deem a pre-master secret

key protocol secure if the adversary is not able to fully compute the key held by
fresh oracles.

Definition 2 (Pre-Master Key Agreement Security). A pre-master key
agreement protocol is secure if it satisfies the following requirements:

e Correctness: If at the end of the execution of a benign adversary, who cor-
rectly relays messages, any two oracles which have had a matching conversa-
tion hold the same pre-master key, and the key should be distributed uniformly
on the pre-master key space Spus-

e Key Secrecy: A pre-master key agreement protocol Il satisfies OW-PMS
key secrecy if for any p.p.t. adversary A its advantage AdvaY\I/{PMS(t) s a

negligible function.

Before proceeding, we discuss the strength of our model for the security of
pre-master secret keys, and several authentication issues.

REMARK 1. Our security requirements for pre-master secret key agreement are
significantly weaker than the standard requirements for key exchange [6,7]. In
particular, we only require secrecy in the sense of one-wayness (not in the sense
of indistinguishability from a random key). Furthermore, the corruption abilities
of the adversary are severely limited: the adversary cannot obtain (or “reveal”)
pre-master secrets established by honest parties (even if these parties are not
those under the attack).

REMARK 2. As a consequence of our security requirements our model may deem
protocols that succumb to unknown-key-share attacks [17] secure. In such at-
tacks, two sessions belonging to honest users U and V locally establish the same
pre-master secret key, without intentional interaction with each other.

REMARK 3. Security under our notion guarantees security against man-in-the-
middle attacks: a situation where honest parties U and V believe they interact
with each other but their pre-master key(s) is in fact shared with the adversary
is a security break in our model.

REMARK 4. Although the resulting security notion is very weak, it turns out
that it suffices to obtain good master-key agreement protocols by appropriately
designed protocols to derive such keys (e.g. the protocol in Step 4 of the TLS
protocol — Figure 1.) More importantly, the weak notion also allows for many
simple protocols to be proved secure. For example, in the next section we prove
that deterministic encryption is sufficient to construct such protocols.

REMARK 5. Our model is not concerned with secure establishment of pre-master
secret keys between two unauthenticated parties (the oracle that is under attack
always has pidy # L). While treating this case is possible using the concept of
matching conversations to pair sessions, the resulting definition would be heavier
and not particularly illuminating. Instead, we concentrate on the situation more
relevant to practice where at least one of the parties that take part in the protocol
(the server) has a certified public key.

REMARK 6. As usual, our security model can be easily adapted to the random
oracle model by providing the adversary with access to the random oracle (when-
ever some hash function is modeled as a RO). The same holds true for the rest
of the models that we develop in this paper.

We now discuss the security of the pre-master secret key agreement protocols
used in TLS.

PROTOCOLS BASED ON PUBLIC-KEY ENCRYPTION. A natural, intuitively ap-
pealing, construction for pre-master key agreement protocols is based on the
following use of an arbitrary public-key encryption scheme Enc. A user selects
a pre-master secret key s from an appropriate space, and sends to the server
the encryption of s under the server’s public-key. The server then obtains s as
the decryption of the ciphertext that it receives. We write PMK(Enc) for the
resulting protocol.

Theorem 1. IfEnc is a OW-CPA secure deterministic encryption or a OW-CCA
secure randomized encryption scheme, then the pre-master secret key agreement
protocol IT = PMK(Enc) is a secure pre-master key transport protocol.

The result of this theorem, like all theorems in this paper will be proved in the
full version.

The weak security properties that we define for pre-master key agreement
protocols enable us to show security of PMK(Enc) based on weak security re-
quirements for Enc. Indeed, the one-wayness type secrecy for pre-master keys
translates to the one-wayness of the encryption function of Enc. This result of
our analysis implies, perhaps surprisingly, that one can avoid the use of full-
fledged IND-CCA encryption schemes in favor of the much simpler deterministic
OW-CPA schemes (e.g. textbook RSA). Of course, probabilistic encryption can
also be used, but in this case we show security of the associated pre-master se-
cret key protocol based on OW-CCA security. More generally our results holds
under the assumption that the encryption scheme is secure against an attacker
with access to a plaintext checking oracle. It is therefore not paradoxical that a
deterministic scheme suffices but an IND-CPA scheme does not.

Finally, since IND-CCA implies OW-CCA, our security analysis does apply to
the (correct) use of an IND-CCA secure public key encryption scheme within the
TLS protocol. In particular, when Enc is RSA-OAEP, the pre-master secret key
protocol PMK(Enc) is secure.

SIGNED DIFFIE-HELLMAN PRE-MASTER KEY AGREEMENT. The pre-master se-
cret key in TLS can also be produced by exchanging a Diffie-Hellman key ¢*Y,
for z and y randomly chosen by the two participants, who also sign the relevant
message flow (either g* or g¥) with their long term signing keys. It is known that
this protocol, which we denote by PMK(Sig, G), does not meet the requirements
of an authenticated key agreement protocol, for example see [17] for a discussion
of this protocol and various attacks on it. However, one can show

Theorem 2. Let G be cyclic group for which the gap-Diffie-Hellman assumption
holds and let Sig be a secure digital signature scheme. Then IT = PMK(Sig, G)
s a secure pre-master key agreement protocol.

4 Master Key Agreement Protocols

In this section we introduce a security model for master-key agreement protocols.
We then show that master key agreement protocols obtained from secure pre-
master key agreement protocols via the transformation used in TLS satisfy our
notion of security.

Our security model for master key agreement protocols is similar to that
for pre-master key agreement protocols. We again ask for the adversary not
to be able to fully recover the master secret key of the session under attack.
Moreover, we ask for a key confirmation guarantee: if a session of some user U
accepts a certain master-key then there exists a unique session of its intended
partner that had accepted the same key. In addition to the queries previously

defined for the adversary, we also let the adversary obtain the master keys agreed
in different sessions of the protocol, without corrupting the user to which this
session belongs, i.e. we allow so-called Reveal queries.

In the formal model that we give below we make the following assumptions
about the syntax of a master-key agreement protocol. We assume that the master
key belongs to some space Syg for which we require that #Syg > 2¢, and assume
that the programs that specify a master key agreement protocol use a variable
m to store the agreed master key. For such protocols the variable o now takes
values in {L, accepted-mk, reject} with the obvious meaning. Furthermore, the
variable y» can also take the value revealed to indicate that the stored master
key has been given to the adversary (see below).

In addition to the queries allowed in the experiment for pre-master key se-
curity, the adversary is also allowed to issue queries of the form Reveal(O). This
query is handled as follows: if 6o =accepted-mk then meo is returned to A and
Yo is set to revealed, while if o F#accepted-mk then the query acts as a no-op.
As before, when a given oracle is initialized all values for the internal states are
set to L. At the end of a protocol the role, partner ID and oracle state (but
not the master key) are recorded in the transcript. Unless dp =accepted-mk we
assume m}] =1.

The definition of freshness needs to be adapted to take into account the
new adversarial capabilities. We call an oracle O fresh if it is uncorrupted, has
successfully finished its execution, its intended partner V is uncorrupted, and
none of the revealed oracles belonging to V' has had a matching conversation with
O. The latter condition essentially says that the adversary can issue Reveal(Q)
for any Q (including those that belong to the intended partner of @), as long as
Q is not the session with which O actually interacts.

Definition 3 (Fresh Master Secret Oracle). A master secret oracle O is
said to be fresh if all of the following conditions hold:

(1) vo =L, (2) 6o = accepted-mk, (3) I V € U such that V is
uncorrupted and pidp =V, and

(4) No revealed oracle IT{, has had a matching conversation with O.

SECURITY GAME FOR MASTER-KEY AGREEMENT PROTOCOLS. The game, de-
noted by Execa\{vﬁMs (t), for defining the security of master-key agreement proto-
col IT in the presence of adversary A is similar to that for pre-master key, with
the modification that A is also allowed to make any number of Reveal queries,
in addition to the NewSession, Send, Corrupt, Reveal, and Check queries. Here,
check queries are with respect to the master secret keys only. When the adver-
sary stops, it outputs a pair (O*, m*), where O* identifies one of its oracles, and

m* is some element of Syg. We say that A wins if its output (O*, m*) is such

that O* is fresh and m* = me-. In this case the output of ExechVﬁMS (t) is set

to 1. Otherwise the output of the experiment is set to 0. We write

AdvQ (1) = Pr[ExecQy o (1) = 1]
for the advantage of A in winning the ExecaYVI}Ms(t) game. The probability is
taken over all random coins used in the execution.

The following definition describes a situation where some party U had en-
gaged in a session which terminated successfully with some party V', but no
session of V' has a matching conversation with U.

Definition 4 (No-Matching). Let No-Matching 4 ;7(t) be the event that at some

point during the execution of ExecJOL‘YVH'MS (t) for two uncorrupted parties U € UUU'

and V € U there exists an oracle O = II}; with pidy =V € U, o = accepted,
and yet no oracle IIi, has had a matching conversation with O.

The following definition says that a protocol is a secure master-key agreement
protocol if the key established in an honest session is secret (in the one-wayness
sense) and no honest party can be coaxed into incorrectly accepting.

Definition 5 (Master Key Agreement Security). A master key agreement
protocol is secure if it satisfies the following requirements:

e Correctness: If at the end of the execution of a benign adversary, who cor-
rectly relays messages, any two oracles which have had a matching conversa-
tion hold the same master key, which is distributed uniformly over the master
key space Suis.

e Key Secrecy: A master key agreement protocol Il satisfies OW-MS key se-
crecy if for any p.p.t. adversary A, its advantage AdvaYVH'MS(t) is a negligible
function.

e No Matching: For any p.p.t. adversary A, the probability of the event
No-Matching 4 ;;(t) is a negligible function.

REMARK 1. Our security requirements for master secret keys are still signif-
icantly weaker than the more standard requirements for key exchange [6,7].
Although the adversarial powers are similar to those in existing models (e.g.[9]),
we still require the adversary to recover the entire key. The weaker requirement
is motivated by our use of TLS as guide in designing the security model. In this
protocol, the master secret key is not indistinguishable from a random one since
it is used to compute MACs that are sent over the network.

REMARK 2. The No Matching property we require is essentially the one based
on matching conversations introduced by Bellare and Rogaway [6], adapted to
our setting where only one of the parties involved in the execution is required to
hold a certified key (and thus have a verifiable identity). One could potentially
replace matching conversations with weaker versions of partnering, but only at
the expense of making the definitions and results less clear. Bellare and Rog-
away also show that if the No Matching property is satisfied, then agreement is
injective. In our terms, with overwhelming probability it holds that if O = II},
had accepted and has pid, = V € U, then there exist precisely one session of V'
with which O has a matching conversation.

REMARK 3. Notice that, together, the first and third conditions in the above
definitions imply a key confirmation guarantee: if one session has accepted a
certain key, then there exists a unique session of the intended partner who has
accepted the same key.

REMARK 4. The addition of Reveal queries implies security against “unknown-
key-share” attacks: if parties U and V share a master-key without being aware
that they interact with each other the adversary can obtain the key of U by
performing a Reveal query on the appropriate session of V', thus breaking security
in the sense defined above.

REMARK 5. Notice that an adversary against the master-secret key does not
have any query that allows it to obtain information about the pre-master secret
key. This is consistent with the SSL specification which states that the pre-
master secret should be converted to the master secret immediately and that
the pre-master secret should be securely erased from memory. In particular this
means that the pre-master secret does not form part of the state of the master
key agreement oracle, and so it does not get written on a transcript.

In this section we show that the master-key agreement protocol obtained from
a secure pre-master key agreement protocol by using the transformation used
in TLS is secure. Let II be an arbitrary pre-master key agreement protocol,
G a hash function, and Mac = (K, MAC, ver) a message authentication code.
We write (II; MKDss (Mac, G)) the master-key agreement protocol obtained by
extending IT with the master-key derivation phase of TLS, i.e. by appending to
the message flows of II those in Step 4 of Figure 1. Starting from a secure pre-
master key agreement protocol, the above transformation yields a secure master
key agreement protocol.

Theorem 3. Let I be a secure pre-master agreement protocol, Mac a secure
message authentication code, and G a random oracle. Then (IT; MKDss (Mac, G))
s a secure master-key agreement protocol.

5 Application Key Agreement

In this section we extend the model developed so far to deal with application keys
obtained from master-secret keys, and the analyze the security of the application
keys obtained through the TLS protocol.

As discussed in the introduction we focus on protocols with a particular struc-
ture: first, a master-key is agreed by the parties via some master-key agreement
protocol I1, and then this key is used as input to an application key derivation
protocol, Y. The same master-key can be used in multiple executions of the
application key protocol which can take place in parallel and concurrently.

We capture this setting by modifying the model for master-key agreement
protocols as follows. We consider two types of oracles: MK-oracles which corre-
spond to sessions where the master secret key is derived (i.e. sessions of protocol
IT), and AK-oracles, which correspond to sessions of the application key deriva-
tion protocol (i.e. sessions of X). The AK-oracles are spawned by MK-oracles
that have established a master-secret key; spawning is done at the request of the
adversary. The internal structure and behavior of MK-oracles are as defined in
the previous section. To describe AK-oracles, we again impose some syntactic

restrictions on the protocols (and thus on the oracles). We require that AK-
oracle @ maintain variables 79, mg,roleg, pidg with the same roles as before.
In addition, a new variable kg € Sa holds the application key obtained in the
session. (Here #Sa > 2!, where t is the security parameter). The state variable
dg now assumes values in {L, accepted-ak, rejected}, with the obvious seman-
tics. Finally, the corruption variable dg is either L or compromised (we explain
below when the latter value is set).

In addition to the powers previously granted to the adversary, now the ad-
versary can also create new AK-oracles by issuing queries of the form Spawn(O),
with O an MK-oracle that had successfully finished its execution. As a result,
a new oracle Q = Egg is created (where j indicates that Q is the j’th oracle
spawned by O.) Oracle Q inherits the variables 79, mg, roleg, and pidg from
O in the obvious way. The adversary may also compromise AK-oracles: when a
query Compromise(Q) is issued, if Q has accepted, then kg is returned to the
adversary and dg is set to compromised. Notice that the Compromise queries are
the analogue of Reveal queries for AK-oracles. We chose to have different names
for clarity.

The security of keys is captured via a Test query. When Test(Q) is issued, a
bit b € {0,1} is chosen at random. Then if b = 0 then kg~ is returned to the
adversary, otherwise a randomly selected element from Sp is returned to the
adversary (who then has to guess b; see the game defined below).

An AK-oracle Q is a valid target for the adversary if the parent oracle of Q
is fresh, Q has finished successfully its execution, its intended partner, say V, is
not corrupt, and any session of V' with which Q has a matching conversation is
not compromised.

Definition 6 (Fresh Application Key Oracle). Let O be a master key agree-
ment oracle and Q@ denote one of its children. The oracle Q is said to be fresh if
the following conditions hold:

(1) O is a fresh master key agreement oracle, (2) ~vo =1, (3) do =
accepted-ak , (4) 3V € U such that pidg =V, and (5) No compromised
session Xgr that belongs to V' has had a matching conversation with Q.

Note that here, we are implicitly assuming that knowing a master key automat-
ically gives the adversary all derived application keys. Whilst this will not be
true of all protocols which one can think of, it is true for all application key
derivation protocols that we consider here and in particular in Stage 5 of the
protocol of Figure 1.

SECURITY GAME FOR APPLICATION-KEY AGREEMENT PROTOCOLS. We define

the security of an application-key protocol II; Y via a game Exec'ﬁ"?}f}" (t) be-

tween an adversary A and a challenger C.

(1) C generates public-secret key pairs for each user U € U, and returns the
public keys to A.

(2) Aisallowed to make as many NewSession, Send, Spawn, Compromise, Reveal,
Check, and Corrupt queries as it likes throughout the game.

(3) At any point during the game adversary .4 makes a single Test(Q*) query.

(4) The adversary outputs a bit ¥'.

We say that A wins if Q* is fresh at the end of the game and its output bit b
is such that b = &’ (where b is the bit internally selected during the Test query).
In this case the result of Exec'ﬂ%fg(t) is set to 1. Otherwise the output of the

experiment is set to 0. We write

_ _ 1
AdvUIRS) (1) = |Pr[Execy T (1) = 1] — 3

for the advantage of A in winning the Exec'ﬁ'?}fg(t) game. Using this security
game we can now define the security of a application key agreement protocol.

Definition 7 (Application Key Agreement Security). An application key
agreement protocol is secure if it satisfies the following conditions:

e Correctness: In the presence of an adversary which faithfully relays mes-
sages, two oracles running the protocol accept holding the same application
key and session ID, and the application key is distributed uniformly at ran-
dom on the application key space.

e Key secrecy: An application key agreement protocol IT; X satisfies IND-AK
key secrecy if for any p.p.t. adversary A, its advantage Adv'ﬁ'%f}"(?ﬁ) s neg-

ligible in t.

REMARK 1. The model that we develop ensures strong security guarantees for
the application keys, in the standard sense of indistinguishability against at-
tackers with powerful corruption capabilities. In this sense our model is close to
existing ones, but has the added feature that we explicitly consider the setting
where more than one application-key can be derived from the same master key.

REMARK 2. Notice that at the application key layer we do not require key
confirmation anymore. Indeed, a trivial attack on the standard notion of key
confirmation can be mounted against application keys derived using the TLS
protocol. However, implicit key confirmation for application keys may still be
achieved, depending how the application key is actually used. (In the full ver-
sion of the paper we discuss the composition of our application key agreement
protocol with specific applications, especially confidentiality applications.)

The loss of this property is in some sense a result of how we chose to break
down the protocol for analysis, since one of our goals was to identify what security
properties each of the stages provides. However, if one considers Stages 1-4 as
the key agreement protocol, and stages 5-6 as the application then one does
obtain an explicit notion of key confirmation. Hence, the loss of explicit key
confirmation in Stage 5 should not be considered a design flaw in TLS.

In this section we show that the application-key agreement protocol obtained
from any secure master-key derivation protocol, and the application-key deriva-
tion protocol of TLS (Stage 5 of Figure 1) is secure.

For any master-key agreement protocol II, and hash function H, we write
(IT; AKssL (H)) for the application-key agreement protocol obtained by extending

II with the application-key derivation protocol of TLS. Informally, this means
that we derive an application key agreement protocol from a master key agree-
ment protocol using Stage 5 of Figure 1. We make no assumption as to whether
the master key agreement protocol itself is derived from a pre-master key agree-
ment protocol as in Figure 1. The following theorem says that starting with a
master-key agreement protocol secure in the sense of Definition 5, the above
transformation yields a secure application key protocol

Theorem 4. Let IT be a secure master-key agreement protocol and H a random
oracle. Then (IT; AKss.(H)) is a secure application-key agreement protocol.

The security of TLS follows from Theorems 1, 2, 3 and 4. For full details the
reader should consult the full version of this paper.

References

1. M. Abdalla and O. Chevassut and D. Pointcheval. One-Time Verifier—based En-
crypted Key Exchange. In Public Key Cryptography — PKC 2005 Springer-Verlag
LNCS 3386, 47-64, 2005.

2. J.H. An, Y. Dodis and T. Rabin. On the Security of Joint Signature and Encryp-
tion. In EUROCRYPT 2002, Springer-Verlag LNCS 2332, 83-107, 2002.

3. M. Bellare, R. Canetti and H. Krawczyk. A modular approach to the design and
analysis of authentication and key exchange protocols. In 30th Symposium on
Theory of Computing — STOC 1998, ACM, 419-428, 1998.

4. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In ASIACRYPT 2000,
Springer-Verlag LNCS 1976, 531-545, 2000.

5. M. Bellare, D. Pointcheval and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000, Springer-Verlag LNCS 1807,
139-155, 2000.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-
vances in Cryptology — CRYPTO 93, Springer-Verlag LNCS 773, 232249, 1994.

7. M. Bellare and P. Rogaway. Provably secure session key distribution: The three
party case. In 27th Symposium on Theory of Computing — STOC 1995, ACM,
57-66, 1995.

8. R. Bird, I.S. Gopal, A. Herzberg, P.A. Janson, S. Kutten, R. Molva and M. Yung
Systematic Design of Two-Party Authentication Protocols. In Advances in Cryp-
tology — CRYPTO ’91 Springer-Verlag LNCS 576, 44-61, 1991.

9. S. Blake-Wilson, D. Johnson and A.J. Menezes. Key agreement protocols and
their security analysis. In Cryptography and Coding, Springer-Verlag LNCS 1355,
30-45, 1997.

10. S. Blake-Wilson and A. Menezes. Entity Authentication and Authenticated Key
Transport Protocols Employing Asymmetric Techniques. In IWSP, Springer-
Verlag LNCS 1361, 137-158, 1998.

11. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1. In Advances in Cryptology — CRYPTO 98,
Springer-Verlag LNCS 1462, 1-12, 1998.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

E. Bresson, O. Chevassut and D. Pointcheval. Provably Authenticated Group
Diffie-Hellman Key Exchange — The Dynamic Case. In Advances in Cryptology —
ASIACRYPT 2001, Springer-Verlag LNCS 2248, 290-309, 2001.

R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In Advances in Cryptology - EUROCRYPT 2001,
Springer-Verlag LNCS 2045, 453-474, 2001.

R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange
and Secure Channels. In Advances in Cryptology — EUROCRYPT 2002, Springer-
Verlag LNCS 2332, 337-351, 2002.

R. Canetti and T. Rabin. Universal Composition with Joint State, In Advances
in Cryptology — CRYPTO 2003, Springer-Verlag LNCS 2729, 265281, 2003.

R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal of
Computing, 33, 167-226, 2003.

W. Diffie, P.C. van Oorschot and M.J. Weiner. Authentication and authenticated
key exchange. Designs, Codes and Cryptography, 2, 107-125, 1992.

T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246, January 1999.
T. Dierks and C. Allen. The TLS Protocol Version 1.2. RFC 4346, April 2006.
A.O. Freier, P. Karlton and P.C. Kocher. The SSL Protocol Version 3.0. Internet
Draft, 1996.

P. Fouque, D. Pointcheval and S. Zimmer. HMAC is a Randomness Extractor and
Applications to TLS. Symposium on Information, Computer and Communications
Security (ASIACCS’08)

K. E. B. Hickman. The SSL Protocol Version 2.0. Internet Draft, 1994.

J. Jonsson and B. Kaliski Jr. On the Security of RSA Encryption in TLS In
Advances in Cryptology — CRYPTO 2002, Springer-Verlag, LNCS 2442, 127-142;
2002.

K.-K. R. Choo, C. Boyd and Y. Hitchcock. Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols. In Advances in Cryptology — ASI-
ACRYPT 2005, Springer-Verlag, LNCS 3788, 585-604, 2005.

H. Krawczyk. The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In Advances in Cryptology — CRYPTO 2001,
Springer-Verlag LNCS 2139, 310-331, 2001.

C. Kudla. Special signature schemes and key agreement protocols. PhD Thesis,
Royal Holloway University of London, 2006.

C. Kudla and K. Paterson. Modular security proofs for key agreement protocols.
In Advances in Cryptology — ASIACRYPT 2005, Springer-Verlag LNCS 3788,
549-565, 2005.

J.C. Mitchell, V. Shmatikov and U. Stern. Finite-state analysis of SSL 3.0. In
SSYM’98: Proceedings of the Tth conference on USENIX Security Symposium,
1998, 1998.

L. Mazare and B. Warinschi. On the security of encryption under adaptive cor-
ruptions. Preprint, 2007.

L. Paulson. Inductive analysis of the Internet protocol TLS. In ACM Transations
on Information and Systems Security, 2(3):332-351, 1999.

V. Shoup. On formal models for secure key exchange (version 4). Preprint, 1999.
D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In ”"2nd USENIX
Workshop on Electronic Commerce”, 1996.

