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Abstract. Recently, Desmedt et al. studied the problem of achieving securen-
party computation over non-Abelian groups. They considered the passive ad-
versary model and they assumed that the parties were only allowed to perform
black-box operations over the finite groupG. They showed three results for the
n-product functionfG(x1, . . . , xn) := x1 · x2 · . . . · xn, where the input of
party Pi is xi ∈ G for i ∈ {1, . . . , n}. First, if t ≥ ⌈n

2
⌉ then it is impossible

to have at-private protocol computingfG. Second, they demonstrated that one
couldt-privately computefG for anyt ≤ ⌈n

2
⌉−1 in exponential communication

cost. Third, they constructed a randomized algorithm withO(n t2) communica-
tion complexity for anyt < n

2.948
.

In this paper, we extend these results in two directions. First, we use percola-
tion theory to show that for any fixedǫ > 0, one can design a randomized al-
gorithm for anyt ≤ n

2+ǫ
usingO(n3) communication complexity, thus nearly

matching the known upper bound⌈n
2
⌉ − 1. This is the first time that percola-

tion theory is used for multiparty computation. Second, we exhibit a determin-
istic construction having polynomial communication cost for anyt = O(n1−ǫ)
(again for any fixedǫ > 0). Our results extend to the more general function
efG(x1, . . . , xm) := x1 · x2 · . . . · xm wherem ≥ n and each of then parties
holds one or more input values.

Keywords: Multiparty Computation, Passive Adversary, Non-AbelianGroups, Graph
Coloring, Percolation Theory.

1 Introduction

In multiparty computation, a set ofn parties{P1, . . . , Pn} want to compute a function
of some secret inputs held locally by these participants. Since its introduction by Yao



[19], multiparty computation has been extensively studied. Most multiparty computa-
tion protocols rely on algebraic structures which are at least Abelian groups [14] as in
[1, 3, 4, 8, 10, 11, 12] for instance. The usefulness of Abelian groups in cryptography
is not restricted to multiparty computation as numerous cryptographic primitives are
developed over such groups [6, 7, 17]. However, the construction of efficient quantum
algorithms to solve the discrete logarithm problem as well as the factoring problem pre-
vent the use of many of these primitives over those machines [18]. Since quantum algo-
rithms seem to be less efficient over non-Abelian groups, there is increasingly a need for
developing cryptographic constructions over such mathematical structures. The reader
may be aware of the existence of public key cryptosystems forsuch groups [15, 16].

Recently, Desmedt et al. studied the problem of designing securen-party protocol
over non commutative finite groups for thepassive(or semi-honest) adversary model
[5]. Their goal is to guarantee unconditional security simply using a black-box represen-
tation of the finite non-Abelian group(G, ·). This assumption means that then parties
can only perform three operations in(G, ·): the group operation((x, y) 7→ x · y), the
group inversion(x 7→ x−1) and the uniformly distributed group sampling(x ∈R G).

Desmedt et al. focused on the existence and the design oft-private protocols for the
n product functionfG(x1, . . . , xn) := x1 · . . . ·xn where the input of partyPi is xi ∈ G

for i ∈ {1, . . . , n}. In such a protocol, no colluding setsC of at mostt participants
learn anything about the data hold by any of the remaining members{P1, . . . , Pn} \ C.
Desmedt et al. obtained three important results. First, ift ≥ ⌈n

2 ⌉ (dishonest majority)
then it is impossible to construct at-private protocol to computefG. Second, ift < ⌈n

2 ⌉
then one can always design a deterministict-private protocol computingfG with an

exponential communication complexity ofO(n
(
2 t+1

t

)2
) group elements. Third, they

built a probabilistict-private protocol computingfG with a polynomial communication
complexity ofO(n t2) group elements whent < n

2.948 .

That work leads to two important questions. First, we would like to know if it is pos-
sible to construct at-private protocol for values oft ∈

[
n

2.948 , ⌈n
2 ⌉ − 1

]
with polyno-

mial communication complexity. Second, Desmedt et al.’s construction shows that one
cant-privately computefG with polynomial communication cost for anyt = O(log n).
A natural issue is to determine the existence and to construct a deterministict-private
protocol with polynomial communication complexity for other valuest (ideally, up to
the threshold⌈n

2 ⌉ − 1).

In this article, we give a positive answer to these two questions. First, we demon-
strate that the random coloring approach and the graph construction by Desmedt et al.
can be used to guaranteet-privacy for anyt < n

2+ǫ
(for any fixedǫ > 0). The communi-

cation complexity of our construction isO(n3) group elements. This result is obtained
using percolation theory. To the best of our knowledge, thisis the first use of this theory
in the context of multiparty computation. Second, we provide a deterministic construc-
tion for anyt = O(n1−ǫ). This scheme has polynomial communication complexity as



well.

This paper is organized as follows. In the next section, we will recall the different
reductions performed in [5] to solve thet-privacy issue over non-Abelian groups. In
Sect. 3, we present our randomized construction achievingt-privacy for any valuet ≤

n
2+ǫ

which is closed to the theoretical bound⌈n
2 ⌉ − 1. In Sect. 4, we show how to

construct deterministict-private protocols having polynomial communication cost for
anyt = O(n1−ǫ). In the last section, we conclude our paper with some remaining open
problems for multiparty computation over non-Abelian black-box groups.

2 Achieving Secure Computation over Non-Abelian Groups

In this section, we present some of the results and constructions developed by Desmedt
et al. which are necessary to understand our improvements from Sect. 3 and Sect. 4.
First, we recall the definition of secure multiparty computation in the passive, computa-
tionally unbounded attack model, restricted to deterministic symmetric functionalities
and perfect emulation as in [5].

We denote[n] the set of integers{1, . . . , n}, {0, 1}∗ the set of all finite binary
strings and|A| the cardinality of the setA.

Definition 1. We denotef : ({0, 1}∗)
n
7→ {0, 1}∗ an n-input and single-output func-

tion. Let
∏

be an-party protocol for computingf . We denote then-party input se-
quence byx = (x1, . . . , xn), the joint protocol view of parties in subsetI ⊂ [n] by

VIEW
Q

I (x), and the protocol output byOUT
Q

(x). For 0 < t < n, we say that
∏

is a t-private protocol for computingf if there exists a probabilistic polynomial-time
algorithmS, such that, for everyI ⊂ [n] with |I| ≤ t and everyx ∈ ({0, 1}∗)

n
, the

random variables

〈S(I, xI , f(x)), f(x)〉 and〈VIEW
Q

I (x), OUT
Q

(x)〉

are identically distributed, wherexI denotes the projection of then-ary sequencex on
the coordinates inI.

In the remaining of this paper, we assume that partyPi has a personal inputxi ∈ G

(for i ∈ [n]) and the function to be computed is then-party productfG(x1, . . . , xn) :=
x1 · . . . · xn.

Desmedt et al. first reduced the problem of constructing at-privaten-party proto-
col for fG to the problem of constructing asymmetric (strong)t-private protocol

∏′

(see [5] for a detailed definition of symmetric privacy) to compute the shared2-product
functionf ′

G(x, y) := x · y where the inputsx andy are shared amongst then parties.
They demonstrated that iterating(n − 1) times the protocol

∏′ would give at-private
protocol to computefG.



The second reduction occurring in [5] consists of constructing a t-privaten-party
shared2-product protocol

∏′ from a suitable coloring over particular directed graphs.
We will detail the important steps of this reduction as they will serve the understanding
of our own constructions.

Definition 2 ([5]). We call graphG an admissible Planar Directed Acyclic Graph
(PDAG) with share parameterℓ and size parameterm(≥ ℓ) if it has the following
properties:

– The nodes ofG are drawn on a squarem × m grid of points (each node ofG is
located at a grid point but some grid points may not be occupied by nodes). The
rows of the grid are indexed from top to bottom and the columnsfrom left to right
by the integers1, 2, . . . , m. A node ofG at row i and columnj is said to have index
(i, j). G has2 ℓ input nodes on the top row, andℓ output nodes on the bottom row.

– The incoming edges of a node on rowi only come from nodes on rowi − 1, and
outgoing edges of a node on rowi only go to nodes on rowi + 1.

– For each rowi and columnj, let η(i,j)
1 < · · · < η

(i,j)

q(i,j) denote the ordered column
indices of theq(i, j) > 0 nodes on leveli+1 which are connected to node(i, j) by
an edge. Then, for eachj ∈ [m − 1], we have:

η
(i,j)
q(i,j) ≤ η

(i,j+1)
1

which means that the rightmost node on leveli + 1 connected to node(i, j) is to
the left of (or equal to) the leftmost node on leveli+1 connected to node(i, j +1).

An admissible PDAG has2ℓ input nodes. The firstℓ ones (i.e.(1, 1), . . . , (1, ℓ))
represent thex-input nodes while the remaining ones represent they-input nodes. Let
C : [m] × [m] 7→ [n] be an-coloring function that associates to each node(i, j) of G a
colorC(i, j) chosen from a set ofn possible colors. The following notion will be used
to express the property we expect the graph coloring to have in order to build

∏′ .

Definition 3 ([5]). We say thatC : [m] × [m] 7→ [n] is a t-reliablen-coloring for the
admissiblePDAGG (with share parameterℓ and size parameterm) if for eacht-color
subsetI ⊂ [n], there existj∗ ∈ [ℓ] andj∗y ∈ [ℓ] such that:

– There exists a pathPATHx in G from thej∗th x-input node to thej∗th output node,
such that none of the path node colors are in subsetI (it is called anI-avoiding
path), and

– There exists anI-avoiding pathPATHy in G from thej∗y th y-input node to thej∗th
output node.

If j∗y = j∗ for all I, we say thatC is a symmetrict-reliablen-coloring.

Important Remark : Even if the graphG is directed, it is regarded asnon-directed
when building theI-avoiding paths in Definition 3.

Desmedt et al. built a protocol
∏′

(G, C) taking as input a graphG and an color-
ing C. We do not detail this protocol in our paper as its internal design does not have



any influence in our work. The reader can find it in [5]. However, in order to ease the
understanding of our work, we recall the relation between multiparty protocols over a
non-Abelian groupG and coloring of admissible PDAGs as it appear in [5].

The n participants{P1, . . . , Pn} are identified by then colors of the admissible
PDAG G. The input/output nodes of the graphG are labeled by the input/output ele-
ments of the groupG. Each edge represents a group element sent from one participant
to another one. Each internal node contains an intermediatevalue of the protocol. Those
values are computed, at each nodeN of G, as the group operation between the elements
along all the incoming edges ofN from the leftmost one to the rightmost one. This
intermediate value is then redistributed along all the outgoing edges ofN using the fol-
lowing ON -of-ON secret sharing whereON represents the number of outgoing edges
of nodeN .

Proposition 1 ([5]). Let g be an element of the non-Abelian groupG. Denoteλ and
µ two integers whereµ ∈ [λ]. We create aλ-of-λ sharing(sg(1), . . . , sg(λ)) of g by
picking theλ−1 shares{sg(ξ)}ξ∈[λ]\{µ} uniformly and independently at random from
G, and computingsg(µ) to be the unique element ofG such that:

g = sg(1) · sg(2) · . . . · sg(λ)

Then, the distribution of the shares(sg(1), . . . , sg(λ)) is independent ofµ.

We recall the following important result:

Theorem 1 ([5]). If G is an admissiblePDAG and C is a symmetrict-reliable n-
coloring forG then

∏′
(G, C) achieves symmetric strongt-privacy.

The last reduction is related to the admissible PDAG. Desmedt et al. only consider
admissible PDAGs as defined below and represented in Fig. 1.

Definition 4 ([5]). The admissiblePDAGGtri(ℓ
′, ℓ) is a ℓ′ × ℓ directed grid such that:

– [horizontal edges] fori ∈ [ℓ′] and for j ∈ [ℓ − 1], there is a directed edge from
node(i, j + 1) to (i, j),

– [vertical edges] fori ∈ [ℓ′ − 1] and forj ∈ [ℓ], there is a directed edge from node
(i, j) to node(i + 1, j),

– [diagonal edges] fori ∈ [ℓ′ − 1] and for j ∈ {2, . . . , ℓ}, there is a directed edge
from node(i, j) to node(i + 1, j − 1).

According to Definition 2, an admissible PDAG has2 ℓ input nodes and no hori-
zontal edges. Desmedt et al. indicated that they-input nodes could be arranged along a
column onGtri(ℓ

′, ℓ) instead of being along the same row as thex-input nodes. They
also explained thatGtri(ℓ

′, ℓ) could also be drawn according the requirements of Defini-
tion 2. By rotatingGtri(ℓ

′, ℓ) by 45 degrees anticlockwise, thex-input nodes andy-input
nodes ofGtri(ℓ

′, ℓ) are now on the same row and the horizontal edges ofGtri(ℓ
′, ℓ) have

become diagonal edges which satisfies Definition 2.

A priori, Gtri(ℓ
′, ℓ) is a rectangular grid. In [5], Desmedt et al. considered square

gridsGtri(ℓ, ℓ) for which they introduced the following notion.
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Fig. 1.The admissible PDAGGtri(ℓ
′, ℓ).

Definition 5 ([5]). We say thatC : [ℓ]× [ℓ] 7→ [n] is a weaklyt-reliablen-coloring for
Gtri(ℓ, ℓ) if for eacht-color subsetI ⊂ [n]:

– There exists anI-avoiding pathPx in Gtri(ℓ, ℓ) from a node on the top row to a
node on the bottom row. Such a path is called anI-avoiding top-bottom path.

– There exists anI-avoiding pathPy in Gtri(ℓ, ℓ) from a node on the rightmost col-
umn to a node on the leftmost column. Such a path is called anI-avoiding right-left
path.

As said in [5], the admissible PDAG requirements (Definition2) are still satisfied
if we remove fromGtri some ’positive slope’ diagonal edges and add some ’negative
slope’ diagonal edges (connecting a node(i, j) to node(i+1, j+1), for somei ∈ [ℓ′−1]
andj ∈ [ℓ − 1]). Such a generalized admissible PDAG is denotedGgtri.

Lemma 1 ([5]). Let C : [ℓ] × [ℓ] 7→ [n] be a weaklyt-reliable n-coloring for square
admissiblePDAGGtri(ℓ, ℓ). Then, we can construct at-reliablen-coloring for a rect-
angular admissiblePDAGGgtri(2ℓ − 1, ℓ).

Thus, Desmedt et al. have demonstrated that it was sufficientto get a weaklyt-
reliable n coloring for someGtri(ℓ, ℓ) in order to construct at-private protocol for
computing then-productfG. The cost communication cost of this protocol is(n − 1)
times the number of edges ofGgtri(2ℓ−1, ℓ). Since that grid is obtained fromGtri(ℓ, ℓ)
using a mirror, the communication cost of the whole protocolis O(n ℓ2) group ele-
ments. The constructions that we propose in this paper are colorings of some grids
Gtri(ℓ, ℓ).

3 A Randomized Construction Achieving Maximal Privacy

In this section, we present a randomized construction ensuring thet-privacy of the com-
putation offG up to n

2+ǫ
. Our scheme has a linear share parameterℓ = O(n).



We use the same random coloringCrand for the gridGtri(ℓ, ℓ) as in [5]. However,
our analysis is based on percolation theory while Desmedt etal. used a counting-based
argument. We first introduce the following definition which is illustrated in Fig. 2.

Algorithm 1 ColoringCrand

Input: A grid Gtri(ℓ, ℓ).
1. For each(i, j) ∈ [ℓ] × [ℓ], choose the colorC(i, j) of node(i, j) independently and uni-
formly at random from[n].

Output: A n-coloring of the grid.

Definition 6. Thetriangular lattice of depthℓ denotedT (ℓ) is a directed graph drawn
over aℓ × (3 ℓ − 2) grid such that:

– [horizontal edges] fori ∈ [ℓ] and forj ∈ [ℓ−1], there is a directed edge from node
(i, i + 2 j) to (i, i + 2 (j − 1)),

– [right downwards edges] fori ∈ [ℓ − 1] and for j ∈ {0, . . . , ℓ − 1}, there is a
directed edge from node(i, i + 2 j) to node(i + 1, i + 2 j + 1),

– [left downwards edges] fori ∈ [ℓ − 1] and forj ∈ [ℓ − 1], there is a directed edge
from node(i, i + 2 j) to node(i + 1, i + 2 j − 1).
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Fig. 2.The triangleT (5).

Proposition 2. For any positive integerℓ, we have a graph isomorphism between
Gtri(ℓ, ℓ) andT (ℓ).

Proof. Consider the mapping:

Gtri(ℓ, ℓ) −→ T (ℓ)
(i, j) 7−→ (i, i + 2 (j − 1))

It is easy to see that the nodes of the two graphs are in bijective correspondence while
the direction of each edge is maintained. ⊓⊔



Theorem 2. For anyǫ > 0, there exists a constantcǫ such that ift ≤ n
2+ǫ

andℓ ≥ cǫn,
then there exists a weaklyt-reliablen-coloring forGtri(ℓ, ℓ).

Proof. We prove that the coloringCrand will work with high probability. Let tǫ =⌊
n

2+ǫ

⌋
where⌊·⌋ denotes the floor function. Instead of considering the probability that

Crand is a weaklytǫ-reliablen-coloring for Gtri(ℓ, ℓ), we study the complementary
event. A suitable value forℓ will be given at the end of this demonstration.

The coloringCrand is calledbad if there exists a color setI ⊂ [n] with |I| = tǫ, such
that either there are noI-avoiding top-bottom paths or there are noI-avoiding right-left
paths. By the union bound, we obtain the following upper bound onPr(Crand is bad):

2 Pr(∃I ⊂ [n], |I| = tǫ, there are noI-avoiding top-bottom paths inGtri(ℓ, ℓ))

≤ 2
∑

I⊂[n],|I|=tǫ

Pr(there are noI-avoiding top-bottom paths inGtri(ℓ, ℓ)). (1)

The factor2 in (1) comes from the fact the top-bottom probability is equal to the right-
left probability due to the symmetry of the gridGtri(ℓ, ℓ) and the coloringCrand.

Next, we demonstrate that for a fixed color setI ⊂ [n] with |I| = tǫ, the probability
that there are noI-avoiding top-bottom paths inCrand is exponentially small. Let us
fix the color setI. We call a vertexclosedif its color belongs toI. Otherwise, the
vertex is calledopen. The random coloringCrand of each vertex is equivalent to open it
independently and randomly with probabilityp := 1− tǫ

n
. An I-avoiding path is simply

anopen path. Therefore, we get:

Pr(there are noI-avoiding top-bottom paths inGtri(ℓ, ℓ))

= Prp(there are no open top-bottom paths inGtri(ℓ, ℓ))

= 1 − Prp(there is an open top-bottom path inGtri(ℓ, ℓ)) (2)

We have the following result.

Lemma 2 ([2]). The triangular latticeT (ℓ) has the following property:

Prp(there is an open top-bottom path inT (ℓ))
+

Prp(there is a closed right-left path inT (ℓ))
= 1

When we combine Lemma 2, Proposition 2 and (2), we obtain the following:

Pr(there is noI-avoiding top-bottom path inGtri(ℓ, ℓ))

=

Prp(there is a closed right-left path inT (ℓ))

=

Pr1−p(there is an open right-left path inT (ℓ)) (3)



In (3), Pr1−p(·) means that we open each vertex with probability1 − p. We have the
following result from percolation theory.

Lemma 3 ([13]).LetT be the triangular lattice in the plane. Then, the critical proba-
bility of site percolationps

c(T ) is equal to1
2 .

When the open probability is less than the critical probability, the percolation has the
following properties (see for example Chapter 4, Theorem 9 in [2]).

Lemma 4 ([9]). If p < ps
c(T ), then there is a constantc = c(p),

Prp(0
n

−→) < e−c n.

where{x
n

−→} is the event that there is an open path fromx to a point inSn(x) with
Sn(x) := {y : d(x, y) = n} andd(x, y) denotes the distance betweenx andy.

Remark: The value0 from Lemma 4 represent the zero element ofZ × Z when the
graph is represented as a lattice over that set. In the case ofthe triangular lattice de-
picted as Fig. 2, the value0 can be identified to the node(1, 1).

In our case, we have:1 − p = tǫ

n
≤ 1

2+ǫ
< ps

c(T ). Using Lemma 4, we get:

Pr1−p(there is an open right-left path inT (ℓ)) ≤ ℓ Pr1−p(0
ℓ−1
−→) ≤ ℓ e−c (ℓ−1) (4)

The first inequality is due to the fact that any right-left path has length at least(ℓ − 1)
in T (ℓ). Combining (1)-(4), we obtain:

Pr(Crand is bad) ≤ 2

(
n

tǫ

)
ℓ e−c (ℓ−1)

Thus, if we chooseℓ := cǫ n for some large enough constantcǫ, we have:

Pr(Crand is bad) ≤
1

2n

which guarantees the fact thatCrand is a weaklytǫ-reliablen-coloring forGtri(ℓ, ℓ)
with overwhelming probability inn. ⊓⊔

Corollary 1. There exists a black boxtǫ-private protocol forfG with communication
complexityO(n3) group elements wheretǫ = ⌊ n

2+ǫ
⌋. Moreover, for anyδ > 0, we

can construct a probabilistic algorithm, with run-time polynomial inn and log(δ−1),
which outputs a protocol

∏
for fG such that the communication complexity of

∏
is

O(n3 log2(δ−1)) group elements and the probability that
∏

is nottǫ-private is at most
δ.

Proof. The existence of the protocol is a direct consequence of Theorem 2 as well as
the different reductions exposed in Sect. 2. As our construction requiresℓ = O(n),
we deduce that the communication cost of the protocol computing fG is O(n3). The
justification of the running time of the algorithm and the probability of failure δ is
identical to what is done in [5]. ⊓⊔



We showed that it was possible to build a randomized algorithm to achieve
⌊

n
2+ǫ

⌋
-

private computation offG usingO(n3) group elements. Even if the probability of fail-
ure of our previous construction is small, we would like to remove the randomized
restriction so that we can get a (deterministic) protocol which is always guaranteed to
succeed. In [5], Desmedt et al. only provided deterministicprotocols to computefG in
polynomial communication cost whent = O(log n). In the next section, we present a
deterministic construction for anyt = O(n1−ǫ) whereǫ is any positive constant. Our
construction requires polynomial communication complexity as well.

4 A Deterministic Construction for Secure Computation

In this section, we show how to build a deterministict-private protocol to computefG

with polynomial complexity cost for anyt = O(n1−ǫ). First, we will focus on particu-
lar pairs(t, n). Second, we generalize our result to any(t, n) with t = O(n1−ǫ).

We recursively construct our admissible PDAGGrec and its coloringCrec. Let d ∈
N \ {0, 1} be a constant. DenoteBd the binomial coefficient

(
2d−1
d−1

)
.

Theorem 3. For any positive integerk, there is a weaklytk-reliable nk-coloring
Crec(ℓk) for the square admissiblePDAG Grec(ℓk), where the parameters are:
tk := dk − 1, nk := (2d − 1)

k andℓk = Bk
d (Bd + 1)

k−1.

Proof. We prove the theorem by induction onk.

k = 1: We havet1 = d−1, n1 = 2 d−1 andℓ1 = Bd. We setGrec(ℓ1) := Gtri(ℓ1, ℓ1).
We defineCrec(ℓ1) as being the combinatorial coloringCcomb designed in [5] and re-
called as Algorithm 2.

Algorithm 2 ColoringCcomb

Input: A L × L grid whereL =
`

N

T

´
.

1. LetI1, . . . , IL denote the sequence of allT -color subsets of[N ] (in some ordering).
2. For each(i, j) ∈ [L]× [L], define the colorC(i, j) of node(i, j) in the grid to be any color
in the setSi,j := [N ] \ (Ii ∪ Ij).

Output: A N -coloring of the grid.

Desmedt et al. noticed that, even if we removed the diagonal edges fromGtri(ℓ1, ℓ1),
we still had the existence ofI-avoiding top-bottom and right-left paths. Thus, we as-
sume thatGrec(ℓ1) has no such edges so thatGrec(ℓ1) is a square grid the side length of
which isℓ1 nodes.Grec(ℓ1) is an admissible PDAG.

k ≥ 1: Suppose we already have the construction and coloring fork, we recursively
constructGrec(ℓk+1) fromGrec(ℓk).



We first build the block gridB by copying(Bd + 1) × (Bd + 1) timesGrec(ℓ1). The
connections between two copies ofGrec(ℓ1) are as follows. Horizontally, we draw a di-
rected edge from node(i, 1) in the right-hand side copy to node(i, ℓ1) in the left-hand
side copy fori ∈ [ℓ1] (i.e. we horizontally connect nodes at the same level). Vertically,
we draw a directed edge from node(ℓ1, j) in the top side copy to node(1, j) in the
bottom side copy forj ∈ [ℓ1] (i.e. we vertically connect nodes at the same level).

The blockB is a(Bd (Bd + 1)) × (Bd (Bd + 1)) grid. It has the following property the
proof of which can be found in Appendix A.

Proposition 3. The block gridB admits a(2 d− 1)-coloring (just use the sameCcomb

for each copy ofGrec(ℓ1)), such that for any(d − 1)-color subsetI ⊂ [2 d − 1], there
areBd + 1 horizontal (vertical)I-avoidingstraight lines in B.

Now, we constructGrec(ℓk+1) and its coloringCrec(ℓk+1) as follows. We replace each
node inGrec(ℓk) by a copy ofB. If the node ofGrec(ℓk) was colored by the color
c ∈ [nk], then we colorB with the set of colors{(2d−1)(c−1)+1, (2d−1)(c−1)+
2, . . . , (2 d − 1) c}, usingCcomb. All the edges within each copy ofB remain identical
in Grec(ℓk+1).

Now, we show how to connect two copies ofB. We first focus on vertical connec-
tions. Consider an edge inGrec(ℓk) from a node in thei-th row to another node in the
(i + 1)-th row. Since these two nodes have been replaced by two copies of B, we de-
note the nodes on the top copy (i.e. those corresponding to the nodes of thei-th row
in Grec(ℓk)) asv1,1, . . . , v1,Bd

, v2,1, . . . , vBd+1,Bd
and the nodes on the bottom copy as

w1,1, . . . , w1,Bd
, w2,1, . . . , wBd+1,Bd

.

For each(i, j) ∈ [Bd] × [Bd], we add a directed edge(vi,j , wi,j+i−1) in Grec(ℓk+1). If
the index(j + i − 1) is greater thanBd, wi,j+i−1 is the nodewi+1,j+i−1−Bd

. Figure 3
gives the example ford = 2. The connection process works similarly for two consec-
utive columns where we replace each horizontal edge fromGrec(ℓk) by B2

d different
edges inGrec(ℓk+1).

It is clear that the number of nodes on each side of the squareGrec(ℓk+1) is:

ℓk+1 = Bd (Bd + 1) · ℓk = Bk+1
d (Bd + 1)

k

and the number of colors used inCrec(ℓk+1) is nk+1 = (2 d− 1) · nk = (2 d − 1)
k+1.

The gridGrec(ℓk+1) obtained by this recursive process is also an admissible PDAG due
to the horizontal/vertical connection processes between two copies ofB (as well as two
copies ofGrec(ℓ1) insideB).

The last point to prove is that for anytk+1-color subsetI ⊂ [nk+1], there is anI-
avoiding top-bottom (and right-left) path inGrec(ℓk+1). We only prove the existence
of a top-bottom path in this paper as the demonstration of theexistence for a right-left
path is similar. For eachj ∈ [nk], we define the setIj as:

Ij := I ∩ {(2d − 1)(j − 1) + 1, (2d− 1)(j − 1) + 2, . . . , (2 d − 1) j}



Fig. 3. How to vertically connect two copies ofB whend = 2.

Since
|I1| + · · · + |Ink

| = |I| = tk+1 = dk+1 − 1 (5)

and each|Ij | ≤ 2d − 1, there are at least(nk − tk) subsets having at most(d − 1)
elements. Indeed, in the opposite case, we would have:

|I1| + · · · + |Ink
| ≥ d (nk − (nk − tk − 1)) = d · dk = dk+1,

which would contradict (5). Assume thatS ⊆ [nk] is the set of these indices (i.e. for
eachj ∈ S, |Ij | ≤ d− 1). We have:|[nk] \ S| ≤ tk. By the induction hypothesis, there
is a ([nk] \ S)-avoiding top-bottom path inGrec(ℓk), i.e., the colors used on this path
all belong toS. Let v1, . . . , vm be the vertices of the path and denote the color of node
vj ascj ∈ S (j ∈ [m]).

Now, we show there is anI-avoiding top-bottom path inGrec(ℓk+1). In
Grec(ℓk+1), each nodevj has been replaced by a copyBvj

with colors in {(2d −
1)(cj − 1) + 1, (2d − 1)(cj − 1) + 2, . . . , (2 d − 1) cj}. Since the color setIcj

sat-
isfies |Icj

| ≤ d − 1, by Proposition 3 we deduce that there areBd horizontal andBd

verticalIcj
-avoiding paths inBvj

.

One can show that this property involves the existence of anI-avoiding top-bottom
path inGrec(ℓk+1). This top-bottom path is the connection of anIc1-avoiding path
(fromBv1 ), anIc2 -avoiding path (fromBv2 ),. . ., anIcm

-avoiding path (fromBvm
). The

reader can find more details about this process in Appendix B.A similar demonstration
leads to the existence of anI-avoiding right-left path inGrec(ℓk+1) which achieves the
demonstration of our theorem. ⊓⊔

The communication complexity of the protocol totk-privately compute the function
fG(x1, . . . , xnk

) using the previous admissible PDAG isO(nk ℓ2
k) group elements whe-

re:

ℓk ≤ Bk
d(Bd + 1)k−1 ≤ 2(2d−1)k × 2(2d−1)(k−1) ≤ 22k(2d−1) ≤ n

2(2d−1)
log2 (2d−1)

k



Note that the last inequality comes from2k = n
1

log2 (2d−1)

k .

Now, we generalize our result to any(t, n) wheret = O(n1−ǫ) for any fixed pos-
itive ǫ. The classO(n1−ǫ) is the set of all functionsf such that:∃τf > 0 ∃n0 > 0 :
∀n ≥ n0 f(n) ≤ τf n1−ǫ. In our case, the functionf is the privacy levelt. Our main
result is stated as follows.

Theorem 4. For any fixedǫ > 0, for any fixedτ > 0, there exists a constantnǫ,τ ∈ N,
such that for anyn ≥ nǫ,τ , if t ≤ τ n1−ǫ, then there exists a black-boxt-private
protocol to computefG with communication complexity polynomial inn. Moreover,
there is a deterministic polynomial time algorithm to construct the protocol.

Proof. We fix ǫ > 0 andτ > 0. We setd = 2⌈
2
ǫ
⌉−1 andk = ⌊log(2d−1) n⌋. We have

d ≥ 2. If n ≥ 2 d − 1 thenk ≥ 1. In such a condition, we can apply Theorem 3 for
the pair(k, d). There exists atk-private protocol to compute the valuefG(x1, . . . , xnk

)
usingO(nk ℓ2

k) group elements wheretk, nk, ℓk are defined as in Theorem 3. It is clear
that the construction alsot′-privately computesfG(x1, . . . , xn′) for any (t′, n′) such
that t′ ≤ tk and n′ ≥ nk. So, we only need to showτ n1−ǫ ≤ tk, n ≥ nk and
ℓk = poly(n). Due to our choice ofd andk, we have:

nk ≤ (2d − 1)⌊log(2d−1) n⌋ ≤ (2d − 1)log(2d−1) n ≤ n

And:

tk ≥ d⌊log(2d−1) n⌋ − 1 ≥ dlog(2d−1) n−1 − 1 ≥
n

log2 d

log2(2d−1)

d
− 1 ≥

n
log2 d

log2 2d

d
− 1

Sinced = 2⌈
2
ǫ
⌉−1, we get:

tk ≥
n

⌈ 2
ǫ
⌉−1

⌈ 2
ǫ
⌉

2⌈
2
ǫ
⌉−1

− 1 ≥
n1− ǫ

2

2⌈
2
ǫ
⌉−1

− 1 ≥
n

ǫ
2

2⌈
2
ǫ
⌉−1

n1−ǫ − 1

Sinceǫ is a fixed positive constant, the mappingn 7→ n
ǫ
2

2⌈ 2
ǫ
⌉−1

has an infinite limit.

Therefore:∃ñǫ,τ > 0 : ∀n ≥ ñǫ,τ
n

ǫ
2

2⌈ 2
ǫ
⌉−1

≥ τ + 1
n1−ǫ .

Remember that we early requiredn ≥ 2 d − 1 in order to use Theorem 3. If we set
nǫ,τ := max(2 d − 1, ñǫ,τ) then:

∀n ≥ nǫ,τ

{
nk ≤ n

tk ≥ τ n1−ǫ ≥ t

It remains to argue aboutℓk. Sincenk ≤ n, we have:ℓk ≤ n
2 (2 d−1)

log2 (2 d−1) . Sinced is
independent fromn, ℓk is upper bounded by a polynomial inn. ⊓⊔

The previous theorem claims that for any fixedǫ, if n is chosen large enough then
we cant-privately computefG for anyt = O(n1−ǫ). Such an asymptotic survey is also



performed in [5]. However, in practical applications, the number of participants is not
asymptotically large. The deterministic construction by Desmedt et al. has polynomial
cost whent = O(log n). We now present a result valid for any group sizen which
guarantees privacy for largert’s than in [5] using polynomial communication as well.

Theorem 5. For any positive integern no smaller than3, there exists a black-box pro-
tocol forfG which is(⌈nlog3 2

2 ⌉ − 1)-private. It requires then participants to exchange
O(n6) group elements. Moreover, there is a deterministic polynomial time algorithm to
construct the protocol.

Proof. We setd = 2 andk := ⌊log3(n)⌋. The protocol obtained using Theorem 3 has
parametertk ≥ nlog3 2

2 − 1 andnk ≤ n. We have:B2 = 3. Therefore:ℓk ≤ n1+2 log3 2

4 .
Thus, we obtain:nkℓ2

k = O(n6). ⊓⊔

5 Conclusion and Open Problems

In this paper, we first demonstrated that we could construct aprobabilistict-private
protocol computing then-product function over any non-Abelian group foranyt up to

n
2+ǫ

(for any fixed positiveǫ), thus nearly matching the known upper bound⌈n
2 ⌉ − 1.

As the communication complexity of our construction isO(n3) group elements, this
result answers one of the questions asked by Desmedt et al. concerning the largest col-
lision resistance achievable with an admissible PDAG of size polynomial inn. Note that
Desmedt et al. indicated the discovery of a construction for(n, t) = (24, 11) improving
locally their own theoretical boundn

2.948 since11 ≈ 24
2.182 . Our result demonstrates the

existence of such a construction for any fixed positiveǫ (in [5], we have the particular
caseǫ = 0.182). Since the scheme developed in [5] (exclusively valid fort < n

2.948 )
only requiresO(n t2) elements to be exchanged, a direction to further investigate is the
existence of a (randomized)t-private protocol for anyt ≤ ⌈n

2 ⌉ − 1 having at most the
cost of Desmedt et al.’s scheme.

Second, we showed that it was possible to construct a deterministict-privaten-party
protocol to computefG having a polynomial communication cost for anyt = O(n1−ǫ).
For practical purpose, one may want to optimize the choice ofparameters in our con-
struction. For example, we have proved that one couldt-privately computefG for any

(t, n) satisfyingt ≤
⌈

nlog3 2

2

⌉
− 1.

Desmedt et al. argued that the reduction from a protocol computing then-product
to a subroutine computing the shared2-product extended to the more general function
f̃G(x1, . . . , xm) := x1 · x2 · . . . · xm wherem ≥ n and each of then parties holds one
or more input values. This ensured the validity of their protocol to securely computẽfG

as well. Since the constructions that we presented are particular admissible PDAGs, our
results are also valid to computẽfG.

Our work leads to the following two questions. First, is it possible to reduce the
communication cost whent = O(n1−ǫ)? Second, can we generalize this approach to



design a deterministic polynomial communication cost algorithm for any t up to the
threshold⌈n

2 ⌉ − 1?

Apart from the previous points which constitute directionsto improve the security
for the passive adversary model, a problem which requires attention is the possibility
of achieving secure computation offG against malicious parties. Indeed, even if mul-
tiparty computation can be used with small groups (as in the case of the Millionaires’
problem [19]), the general purpose is to enable large communication groups to perform
common computations and the larger the number of parties is,the more likely (at least)
one of them will deviate from the given protocol.
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A Proof of Proposition 3

Let I be a(d − 1)-color subset of[2 d − 1]. In [5], Desmedt et al. demonstrated that
there were aI-avoiding top-bottom path and aI-avoiding right-left path inGtri(ℓ1, ℓ1).
They also showed that those two paths were straight lines. Thus, one can remove the
diagonal edges ofGtri(ℓ1, ℓ1) while preserving those paths. This means that there ex-
ist aI-avoiding top-bottom path and aI-avoiding right-left path inGrec(ℓ1) which are
straight lines.

SinceB is a-(Bd+1)×(Bd+1)-copy ofGrec(ℓ1) and, due to the vertical/horizontal
connections of these copies, we deduce that there are(Bd + 1) I-avoiding top-bottom
paths and(Bd + 1) I-avoiding right-left paths inB. Moreover, each of these paths is a
straight line.

B Connection of Color Avoiding Paths

It was shown in the proof of Theorem 3 that each blockBci
hadBd horizontal andBd

vertical Ici
-avoiding paths. In this appendix, we show how to construct aI-avoiding

top-bottom path inGrec(ℓk+1). Our path will start at the top ofBv1 and ends at the
bottom ofBvm

.



Every grid from the family(Grec(ℓλ))λ≥1 is a square grid. Thus, the sequence of
blocksBv1 , . . . , Bvm

in Grec(ℓk+1) is determined by the position ofBv1 as well as the
m-tuple of letters from{L, R, T, B} (Left, Right,Top,Bottom) indicating the output
side of the blockBvi

for i ∈ [m]. Note that the last letter of the tuple is alwaysB since
theI-avoiding top-bottom path ends at the bottom ofBvm

.

This tuple has the property the two consecutive letters cannot be opposite to each
other (i.e, one cannot have(L, R), (R, L), (T, B) or (B, T)). This means that you leave
a block on a different side that you entered it. The reader cancheck the correctness of
this claim by a simple recursive process on the parameterk. This property is trivially
true fork = 1 sinceGrec(ℓ1) = Gtri(ℓ1). The recursion follows from the path construc-
tion that we will design below.

Proposition 4. Let i be any element of[m]. Assume thatN is any node on a side of
Bvi

belonging to aIci
-avoiding straight line path. For each other sideSi of Bvi

, we
can construct aIci

-avoiding path fromN to any of the(Bd +1) nodes onSi belonging
to a Ici

-avoiding straight line path.

Proof. We only provide a proof whenN is on the top side ofBvi
(the three other

cases are similar). The three possible output sides areB, L andR. The blockBvi
is

a-(Bd + 1)× (Bd + 1)-copy of the original gridGrec(ℓ1). Thus,Bvi
can be treated as a

(Bd + 1)× (Bd + 1) array of gridsGrec(ℓ1). Based on this observation, we will use the
terminologygrid-row (respectivelygrid-column) to denote a set ofBd + 1 horizontal
(respectively vertical) gridsGrec(ℓ1) in Bvi

.

1. Si = B. The verticalIci
-avoiding path starting at nodeN intersects thehorizontal

Ici
-avoiding path located within the bottom grid-row ofBvi

at nodeI. That horizontal
path intersects each of theBd + 1 vertical Ici

-avoiding paths (one within each grid-
column) atI1, . . . , IBd+1. Note thatI = Iµ for someµ ∈ [Bd +1]. Once we are at one
of theIj ’s, we simply go vertically downwards to the nodeN ′

j located at the bottom
side of the blockBvi

.

Thus, we can construct a path fromN to each of theBd +1 output nodes on the bottom
side ofBvj

belonging to the verticalIci
-avoiding paths. Those paths are(N , I, Ij ,N ′

j)
for j ∈ [Bd + 1].

2. Si = R. The verticalIci
-avoiding path starting at nodeN intersects thehorizontal

Ici
-avoiding path located within the top grid-row ofBvi

at nodeI. That horizontal path
intersects thevertical Ici

-avoiding path located within the rightmost grid-column of
Bvi

at nodẽI. This vertical path intersects each of theBd + 1 horizontal Ici
-avoiding

paths (one within each grid-row) atĨ1, . . . , ĨBd+1. As before, we get:̃I = Ĩµ for some
µ ∈ [Bd +1]. Once we are at one of thẽIj ’s, we horizontally go rightwards to the node
N ′

j located on the right hand side of the blockBvi
.

Thus, we can construct a path fromN to each of theBd + 1 output nodes on the
right hand side ofBvj

belonging to the horizontalIci
-avoiding paths. Those paths are



(N , I, Ĩ, Ĩj ,N ′
j) for j ∈ [Bd + 1].

3. Si = L. This is analogous to the previous case. ⊓⊔

We can finally construct aI-avoiding top-bottom path inGrec(ℓk+1). We denote the
m-tuple of output sides as(S1, . . . , Sm). As previously said, we have:Sm = B.

We start atanynodeN1 located on the top side ofBv1 and on a verticalIc1 -avoiding
path. Using Proposition 4, we can connectN1 to any of theBd + 1 nodes on sideS1

of Bv1 using aIc1 -avoiding path. An important remark is that each block of thewhole
grid Grec(ℓk+1) is a set of(Bd + 1) × (Bd + 1) identical copies ofGrec(ℓ1) (including
the coloring). As a consequence, theseBd + 1 nodes have the same location in their
respective copies ofGrec(ℓ1). Given the connection process between any pair of blocks
within Grec(ℓk+1), one of theseBd + 1 nodes must be connected to a nodeN2 from
blockBv2 belonging to aIc2-avoiding straight line path. Similarly,N2 is connected via
a Ic2-avoiding path inBv2 to a nodeN3 from Bv3 belonging to aIc3-avoiding straight
line path. If we repeat this process for each of the remainingblocks, we obtain a set of
m − 1 nodesN1, . . . , Nm−1. The last nodeNm−1 can be connected to a nodeNm on
the bottom side ofBvm

using aIcm
-avoiding path. Thus,N1 (top side ofGrec(ℓk+1)) is

connected toNm (bottom side ofGrec(ℓk+1)) using aI-avoiding path which achieves
the demonstration of our theorem.

Remark: As claimed above, this construction involves that the two consecutive side
letters of them-tuple cannot be opposite to each other.


