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Abstract. In the standard general-adversary model for multi-party pro-
tocols, a global adversary structure is given, and every party must trust
in this particular structure. We introduce a more general model, the
asymmetric-trust model, wherein every party is allowed to trust in a dif-
ferent, personally customized adversary structure. We have two main
contributions. First, we present non-trivial lower and upper bounds for
broadcast, verifiable secret sharing, and general multi-party computation
in different variations of this new model. The obtained bounds demon-
strate that the new model is strictly more powerful than the standard
general-adversary model. Second, we propose a framework for express-
ing and analyzing asymmetric trust in the usual simulation paradigm for
defining security of protocols, and in particular show a general composi-
tion theorem for protocols with asymmetric trust.

1 Introduction

In the standard general-adversary model for multi-party computation (MPC) [13],
an adversary structure is specified which basically lists all sets of parties that we
expect the adversary might be able to corrupt. This model is symmetric: every
party is required to trust in the same adversary structure A. This is unnatural
since there is no inherent reason why the parties should all have the same view
on which adversary structure best models the given scenario. For instance, two
parties may have completely contradictory beliefs on whether a third party can
be corrupted or not. Also, insisting on one global adversary structure may imply
that a party must consent to the fact that he himself is completely untrusted.
In this paper, we introduce a more natural asymmetric-trust model where each
party pi is allowed to trust in his own adversary structure Ai. We then explore
the differences between this asymmetric model and the standard one.

Of course, a trivial approach is to try to build a protocol that will be secure
even if any set from any Ai is corrupt. However, this may be impossible, namely
if the union of all Ai violates known lower bounds for the symmetric model. Our



main conclusion in this paper is that there are cases where the trivial symmet-
ric solution does not work, but where nevertheless broadcast, verifiable secret
sharing, or even general secure computation, are possible with asymmetric trust.

As an example, consider the three-party scenario where p1 distrusts p2, p2

distrusts p3, and p3 distrusts p1. In the standard model, MPC requires broadcast
channels for this problem. In contrast, in the most natural one of our asymmetric-
trust models, MPC does not require broadcast for the same scenario.

1.1 General setting

We assume that n parties P = {p1, . . . , pn} are given who are connected by a
complete, synchronous network of pairwise channels. Also present is an adversary
who may corrupt some subset of the parties.

We consider both passive and active corruption. We also consider both com-
putational and unconditional security; where we may distinguish between uncon-
ditional security with negligible error probability or perfect security. When we do
not state the type of security explicitly, positive results mean that the goal can
be achieved with unconditional security, and negative results hold even w.r.t. to
computational security.

A crucial point is whether the parties are additionally connected by broad-
cast channels and/or share a consistent public-key infrastructure (PKI). In the
active case, broadcast/PKI typically allow for more resilient protocols than in
the setting with only pairwise channels. Note that a PKI can be set up with
respect to an unconditional pseudo-signature scheme [2, 17]. Therefore, in the
PKI setting, the achievability of a computationally secure task typically implies
its feasibility with unconditional security.

1.2 Contributions

General multi-party computation (MPC) [20, 12] typically relies on the two fun-
damental building blocks broadcast [16] (BC, aka Byzantine agreement) and (ver-
ifiable) secret-sharing [4, 19, 7] ((V)SS). It is thus interesting to know to which
extent these tasks can be achieved in a certain model.

We introduce different variants of the asymmetric-trust model and corre-
sponding definitions for broadcast, VSS, and general MPC; and give feasibility
and impossibility results for these cases. Most results demonstrate that protocols
for the asymmetric model are able to tolerate a strictly stronger adversary than
any protocol for the symmetric model. For broadcast and VSS, we come quite
close to characterizing the difference between symmetric and asymmetric trust,
while the situation is much more open for general MPC.

In addition we give a general framework for augmenting security models
with asymmetric trust. For concreteness we describe how to extend the UC
framework [5] with asymmetric trust. This seems to be the first simulation-
based security model for reasoning about asymmetric trust. Finally, we explore
the issue of when UC secure MPC is possible when the parties have asymmetric
trust in the setup assumptions.
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1.3 Symmetric-trust model

In the symmetric-trust model, a single adversary structure A is given which is a
monotone subset of the power set of P, A ⊆ 2P . Monotone means that A ∈ A
and A′ ⊂ A imply that A′ ∈ A.4 The goal is to achieve secure MPC for the case
that an adversary corrupts the parties in exactly one set in A. However, if the
adversary manages to corrupt a set A /∈ A then no security is guaranteed. A
set A ∈ A is called maximal if there is no set A′ ∈ A that strictly contains A:
@A′ ∈ A : A′ ⊃ A.

The tight bounds [13] for multi-party computation in the symmetric model
are summarized in the following table where the second column indicates whether
broadcast channels or a public-key infrastructure (PKI) are available.

STD Broadcast/PKI Unconditional Computational
Passive don’t care Q2 Q1

Active available Q2 Q2

Active not available Q3 Q3

Qk ≡
(
∀A1, . . . , Ak ∈ A :

⋃k
i=1 Ai 6= P

)
1.4 Asymmetric-trust model

In the asymmetric-trust model, every party pi has its own personalized adversary
structure Ai ⊆ 2P . We denote A = (A1, . . . ,An) as the aggregate adversary
structure and define A∗ :=

⋃n
i=1Ai. We assume that each party pi trusts itself,

i.e., A ∈ Ai ⇒ pi /∈ A. The set of corrupted parties is denoted by F .
We generally assume that all the adversary structures Ai are publicly known,

so that we can use information on them in the code of our protocols. In other
words, parties must make their beliefs public. Indeed, this seems necessary for
our feasibility results and besides we do not believe this to be problematic:
even if we were in the symmetric model and just wanted to agree on one global
adversary structure, it would still seem necessary to discuss beliefs in public.

We now introduce some variants of the asymmetric-trust model. The pre-
sentation here is somewhat informal; we show later in the paper how to fully
formalize it using a variant of the UC framework.

Via symmetry. One approach is to define security for (A1, . . . ,An) via the
usual symmetric notion. It is clear that if party pi believes that the subsets
Ai could be corrupted, then pi would only be willing to participate in an A-
secure protocol π if Ai ⊆ A: if Ai \ A 6= ∅, then there exists a subset F ⊆
{p1, . . . , pn} which pi thinks might be corrupted and which π might not tolerate
being corrupted.

4 However, we allow for the loose notation of non-monotone structures A in which
case we actually mean the structure’s monotone closure, e.g., A = {{p1}} refers to
the actual structure A = {{p1}, ∅}.
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The definition going via symmetry insists on still giving a definition of secu-
rity by specifying some subsets F against which the protocol should be secure. As
argued above, to allow all parties to participate in π, any such definition would
have to require π simply to tolerate the corruption structure A∗ =

⋃n
i=1Ai. This

of course gives no new views at asymmetric trust.

Via allowed consequences. A more interesting approach to trust is to say that
in reality all subsets F ⊆ {p1, . . . , pn} can imaginably be corrupted. The party
pi having corruption structure Ai simply means that pi thinks it very unlikely
that a subset Ai 6∈ Ai will be corrupted. A reasonable security definition should
therefore allow any corruption pattern F ⊆ {p1, . . . , pn} to occur. The goal is
then (similarly to [15]) to specify for each F ⊆ {p1, . . . , pn} what consequences
the corruption of F is allowed to have. These consequences should ideally be such
that all pi would be willing to participate in an (A1, . . . ,An)-secure protocol.

Strict. In the strict notion we take the standard security definitions for broad-
cast, VSS, and MPC, and require that no matter what subset F ⊆ {1, . . . , n}
is corrupted, the protocol must provide full security to all uncorrupted parties.
In terms of threshold security this corresponds to t = n and is unattainable for
most multi-party tasks. Two-party tasks like secure communication and zero-
knowledge however have strictly secure implementations, possibly using setup
assumptions.

Fully relaxed. At the other extreme from strict security we consider fully
relaxed security. From the set F ⊆ {p1, . . . , pn} of corrupted parties we define
three types of parties: corrupted, näıve, foreseeing. A corrupted party is a party
from F . A näıve party pi is honest (not from F ) but it happens that F /∈ Ai. A
foreseeing party pi is honest and has F ∈ Ai. A näıve party is called näıve as it
believed it very unlikely that F would be corrupted, yet it was.

The fully relaxed model requires full security (in the usual sense) for the set
of foreseeing parties but no security for the näıve parties. That is, a näıve party
is treated like a corrupted party (although it is not controlled by the adversary).

If (A1, . . . ,An) = (A, . . . ,A) for some common adversary structure A, then
all parties are foreseeing (and thus protected) as long as F ∈ A and all parties
are näıve (and thus unprotected) as long as F 6∈ A. In this sense fully relaxed
security corresponds to usual A-security.

Semi-relaxed. Strict security protects even näıve parties and fully relaxed
security gives no security at all to näıve parties. There are different ways to
define a semi-relaxed model in-between these extremes. In general, a semi-relaxed
model requires full security for the set of foreseeing parties but still some partial
security (to be defined) for näıve parties.

The main reason why we consider semi-relaxed models is that, in the fully
relaxed model, composition of subprotocols is difficult. A näıve party may, for
instance, not be able to consistently broadcast the message it wants although it
follows the protocol. Extending some security constraints to the set of all honest
parties thus allows to compose protocols more easily.
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2 Broadcast, VSS, and MPC with Asymmetric Trust

In this section we focus on implementing broadcast, VSS, and MPC in the point-
to-point model with asymmetric trust. A first observation is that in the passive
case, as well as in the active case where broadcast or a PKI is given, the sym-
metric bounds (summarized in the table below5) still hold for any of the defined
asymmetric-trust models:

Theorem 1. In the passive case and in the active case with broadcast (or PKI),
broadcast, VSS, and MPC in any asymmetric model are achievable with respect
to an aggregate adversary structure A = (A1, . . . ,An) if and only if they are
achievable with respect to the structure A∗ =

⋃n
i=1Ai in the symmetric-trust

model:
Passive Active (BC/PKI)

Broadcast Q1 Q1

(V)SS Q1 Q2

MPC Q1 / Q2 Q2

Proof. The cases where there is a protocol for any structure are trivial. For all
remaining cases Q2(A∗) is a tight bound in the symmetric model.

⇐ Trivially, if a task is achievable in the symmetric model for A∗ then it is also
achievable in any asymmetric model for aggregate structure (A∗, . . . ,A∗)
and thus for any A = (A1, . . . ,An) such that

⋃n
i=1Ai = A∗.

⇒ Assume any protocol in the asymmetric model for some aggregate structure
A = (A1, . . . ,An) such that ¬Q2(A∗). Since each party trusts itself there
must be two distinct parties pi and pj and adversary sets Ai ∈ Ai and
Aj ∈ Aj such that Ai ∪ Aj = P, and pi ∈ Aj and pj ∈ Ai. From this, we
can build a two-party protocol for the same task wherein the parties distrust
each other. This is done by having one party simulate pi (and the parties
in Aj) and the other one pj (and the parties in Ai), and then execute the
asymmetric protocol we assumed exists.
For unconditionally secure MPC in the passive case this implies that two
parties can securely compute the logical OR over their input bits, which is
impossible [3, 18].
For VSS (in the active case) this implies that a dealer can secret-share a
value in the two-party setting such that the other party can reconstruct it
during the reconstruction phase without the help of the dealer — but then it
can also do so at any time after the sharing phase, which contradicts security.
For MPC (and secure function evaluation, in particular) in the active case
this implies that two parties can flip a fair coin, which is impossible [8]. ut

In view of this theorem, for the rest of this section, we concentrate on the
case where the adversary is active and where BC/PKI are not assumed.
5 The only difference between computational and unconditional security occurs for

MPC in the passive case where MPC for any structure is achievable with computa-
tional security but Q2 is necessary for unconditional security.
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2.1 Broadcast

Definition 1 (Broadcast w/ full relaxation). A protocol where sender ps ∈
P inputs xs ∈ D, and all pi ∈ P output yi ∈ D, achieves broadcast with full
relaxation if:

Validity: If ps and pi are honest and F ∈ As ∩ Ai then yi = xs.
Consistency: If pi and pj are honest and F ∈ Ai ∩ Aj then yi = yj. �

For the use as a subprotocol in MPC, a helpful additional property of broad-
cast is to demand validity independently of the sender’s adversary structure. In
that way, a näıve party can still consistently convey its view. We define semi-
relaxed broadcast as broadcast with sender-independent validity in the following
way — where we only state the different validity condition.

Definition 2 (Broadcast w/ sender-indep. validity (semi-relaxed)).

Validity: If ps and pi are honest and F ∈ Ai then yi = xs. �

The following theorem is proven in the full version of the paper.

Theorem 2. Broadcast with sender-independent validity for every sender ps ∈
P is (perfectly) achievable if and only if

B3(A) ≡ ∀Ai,Aj : ∀Ai ∈ Ai, Aj ∈ Aj , Aij ∈ Ai ∩ Aj : Ai ∪Aj ∪Aij 6= P.

Note that B3(A) is a proper relaxation of Q3(A), which is necessary and
sufficient in the symmetric framework. In particular, B3(A) is a condition on all
pairs of parties, whereas Q3(A) is the condition ∀Ai ∈ Ai,∀Aj ∈ Aj ,∀Ak ∈ Ak :
Ai ∪ Aj ∪ Ak 6= P on all triples of parties. Trivially, any semi-relaxed version
of broadcast implies broadcast with full relaxation. Achievability under B3(A)
thus follows for the fully relaxed case. However, the next two results show, first
that B3(A) is not necessary for fully relaxed broadcast, and second, a weaker
but necessary condition.

Proposition 1. There are aggregate structures A such that ¬B3(A) and broad-
cast with full relaxation is achievable for every selection of a sender ps ∈ P.

Proof. Consider aggregate structure A = ({{p2}, {p3}}, {{p1}, {p3}}, ∅) among
P = {p1, p2, p3}. If the sender is p1 or p2 then it can simply multi-send its
input value since, with respect to p3, validity and consistency only have to hold
if nobody is corrupted. If the sender is p3 then p3 can send its input value to
p1 who in turn sends it to p2. Again, validity and consistency with respect to
p3 only have to hold if no party is corrupted; parties p1 and p2 are trivially
consistent. ut

Theorem 3. If there are structures Ai, Aj, and Ak, and sets Aij ∈ Ai ∩ Aj,
Aik ∈ Ai ∩ Ak, Ajk ∈ Aj ∩ Ak, such that Aij ∪ Aik ∪ Ajk = P then broadcast
with full relaxation is not achievable for any selection of a sender ps ∈ P.

Proof. Along the lines of the lower-bound part of the proof of Theorem 2. ut
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2.2 Verifiable secret sharing (VSS)

Definition 3 (VSS w/ full relaxation). A pair of protocols (Sh, Rec) wherein
dealer pd ∈ P inputs secret s in protocol Sh and every pi ∈ P outputs si in
protocol Rec achieves VSS with full relaxation if:

Secrecy: If pd is honest and F ∈ Ad then the adversary has no information
about s as long as protocol Rec has not started yet.

Correctness: If pd and pi are honest and F ∈ Ad∩Ai then pi computes output
si = s in protocol Rec.

Commitment: If pi and pj (case i = j included) are honest and F ∈ Ai ∩ Aj

then, after termination of protocol Sh, there is a value s′ ∈ F such that, in
protocol Rec, pi and pj compute output si = sj = s′. �

It may be tempting to believe that fully relaxed VSS could be obtained by
just running a standard VSS protocol that is secure with respect to the dealer’s
adversary structure Ad. But such a protocol provides no security at all if F 6∈ Ad,
and hence cannot in general guarantee that the commitment property is satisfied.

We define semi-relaxed VSS as VSS with dealer-independent correctness in
the following way — where we only state the conditions different from the pre-
vious definition.

Definition 4 (VSS w/ dealer-indep. correctness (semi-relaxed)).

Correctness: If pd and pi are honest and F ∈ Ai then pi computes output
si = s in protocol Rec. �

We derive our VSS protocols from the VSS protocol in [14]. Note that, since
we are not given full-fledged broadcast, additional measures have to be taken.

Theorem 4. Perfectly secure VSS with full relaxation is achievable for every
selection of a dealer pd ∈ P if

V 3(A) ≡ ∀Ai,Aj : ∀Ai ∈ Ai,∀A′
i ∈ Ai,∀Aj ∈ Aj : Ai ∪A′

i ∪Aj 6= P.

Proof. Follows from the protocol in Fig. 1 which is analyzed in Lemma 1. ut

Lemma 1. For a given V 3-structure, the protocol in Fig. 1 achieves fully relaxed
VSS with perfect security.

Proof. Secrecy: If F ∈ Ad then the share sk with Pk = P \ F 6= ∅ being all
honest does not get opened during the sharing phase by an honest dealer
since it receives no complaints from within Pk with respect to this share (all
broadcasts are valid with respect to pd). Share sk perfectly hides the secret.
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Sharing Sh: For each maximal set Ak ∈ Ad the dealer pd assigns a random share
sk ∈ F with the only restriction that s =

P
k sk. The dealer sends each sk to all

parties in Pk = P \Ak. Each party pi ∈ Pk stores sk and s′k := sk.
For each sk, the parties in Pk pairwisely compare their shares. If any inconsistency
is detected by a party pi ∈ Pk it broadcasts (w/ sender-independent validity) a
complaint to all parties in P.
Now, if the dealer receives any complaint, it opens share sk by broadcast (w/ sender-
independent validity) towards P. Party pi ∈ P always adopts any opening by the
dealer. If a party pi ∈ P sent or received a complaint but does not see the dealer
open sk, it disqualifies the dealer and defines sk := 0. Note that a party in Pk who
disqualifies the dealer still stores the initial share s′k it is holding — although, from
now on, it uses sk = 0 for its own computation.
A party pi ∈ Ak who, at this point, neither disqualified the dealer nor saw the
dealer open share sk, is called k-curious.
Reconstruction Rec: For each share sk,
– All parties in Pk multi-send s′k to the parties in Ak.
– All parties who are not k-curious accept sk as the reconstructed share.
– All parties pj who are k-curious wait for the parties pi ∈ Pk to send their

shares. Then they search for a set Aj ∈ Aj such that all parties in Pk \Aj sent
the same share ŝ′k. Party pj then accepts sk := ŝ′k.

Finally, all shares sk are summed up in order to compute the reconstructed secret.

Fig. 1. Protocol VSS with full relaxation

Correctness: We show that when parties pd and pi are honest and F ∈
Ad ∩ Ai then, during reconstruction, pi opens each share sk (share with
respect to Ak ∈ A) correctly as distributed by pd.
First, we observe that pi does not disqualify the dealer pd: disqualification
implies a complaint sent or received by pi — and thus also received by pd.
This forces pd to open sk, implying that pi does not disqualify pd. This
implies that either pd opened sk during the sharing phase or that all honest
parties in Pk agree on the same share s′k = sk. An opening during the sharing
phase is correctly received by pi (validity of broadcast). If pi remains k-
curious then there is the unique value ŝ′k = sk such that there exists some
Ai ∈ Ai with all parties in Pk \ Ai opening the same share ŝ′k — since
Ad ∪Ai ∪A′

i 6= P.
Commitment: Consider two honest parties pi and pj such that F ∈ Ai ∩ Aj .

All information that is broadcast is thus valid and consistent with respect
to pi and pj . We distinguish three cases.

– pi, pj ∈ Pk. Because of broadcast consistency, both parties either dis-
qualify the dealer (sk = 0), or accept the same initial share, or adopt
the same share being opened by the dealer.

– pi ∈ Pk, pj ∈ Ak. Because of broadcast consistency, pi and pj receive
exactly the same values that are broadcast. Thus either both disqualify,
or both adopt, or pi stays with his initial share whereas pj is k-curious.
In the latter case, there was no complaint and thus no conflict among
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any honest parties in Pk — and thus all honest parties in Pk hold the
same share s′k. As in the correctness argument, pj thus finds the unique
value ŝ′k = sk such that there is some Aj ∈ Aj with all parties in Pk \Aj

all opening the same share ŝ′k — which is identical to pi’s share. Thus,
commitment is also guaranteed in the latter case.

– pi, pj ∈ Ak. The parties both either are k-curious, or adopt the same
opening, or disqualify the dealer. If they are k-curious then no honest
party in Pk broadcast a complaint and thus, again, all honest parties in
Pk hold the same share s′k. Since F ∈ Ai∩Aj both parties will determine
a set Ai ⊆ F (and Aj ⊆ F , respectively) such that the parties in Pk \Ai

(Pk \Aj) all open the same share ŝ′k = s′k. ut

Proposition 2. There are aggregate structures A such that ¬V 3(A) and VSS
with full relaxation is achievable for every selection of a dealer pd ∈ P.

Proof. Consider aggregate structure A = ({{p2}, {p3}}, {{p1}}, ∅) among P =
{p1, p2, p3}. The parties can run the preprocessing protocol from [10] trying to
establish a PKI with unconditional security. If it succeeds then the players can
simulate broadcast and thus use the VSS protocol for dishonest minorities in,
e.g., [9]. If it fails then it suffices that the dealer always reconstructs his input
value whereas the other parties reconstruct some default value. ut

The following theorem is proven in the full version of the paper.

Theorem 5. Unconditionally secure VSS with dealer-independent correctness
is achievable if V 3(A). Additionally, secrecy with respect to any F ∈ A∗ can be
guaranteed.

Theorem 6. If ¬V 3(A) then perfectly secure VSS with dealer-independent cor-
rectness is not achievable for every selection of a dealer pd ∈ P.

Proof. If n = 2 then ¬V 3(A) and self-trust imply ¬Q2(A∗), and impossibility
follows from Theorem 1. We can therefore assume that n ≥ 3.

With ¬V 3(A) there are structures Ai and Aj , and sets Ai, A
′
i ∈ Ai and

Aj ∈ Aj with Ai ∪ A′
i ∪ Aj = P. We show that there is no VSS with respect

to dealer pd = pj . Note that Ad ∪ Ai ∪ A′
i = P and self-trust imply, wlog, that

pd ∈ Ai and pi ∈ Ad.
If such a VSS protocol existed then three parties pδ, pι and pκ could use

it to simulate VSS among themselves with dealer pδ where (Aδ,Aι,Aκ) =
{{pι}, {{pδ}, {pκ}}, ∅}: pδ simulates all parties in Ai, pι simulates all parties
in Ad, and pκ simulates all parties in A′

i. Now the share sι is not allowed to
give any information about secret s but any triplet (sδ, sι, ·) perfectly reveals an
honest dealer’s correct secret and any triplet (·, sι, sκ) perfectly reveals the value
a corrupted dealer was committed to. This is not possible. ut

Finally, note that impossibility of broadcast implies impossibility of VSS.
Thus all impossibility results for broadcast naturally extend to VSS.
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2.3 Multi-party computation (MPC)

We now argue informally that, also with respect to general MPC, the asymmetric-
trust model allows to tolerate strictly more than in the symmetric case. We only
consider fully relaxed security, i.e., privacy and correctness only hold for foresee-
ing parties. This notion of MPC security is formalized in the following section.

Theorem 7. In the fully relaxed model, there exist infinite many aggregate
structures A = (A1, . . . ,An) with ¬Q3(A∗) for which unconditionally secure
MPC is achievable.

Proof. We construct an aggregate adversary structure A for n = 3T parties,
where each individual Ai is such that its maximal sets have size T , but where
no set of size T occurs in more than one Ai. Clearly, for each n, there are several
such structures and several of them are not Q3. For such a structure, we can
implement MPC by first running a preprocessing protocol from [11] that aims
at establishing a PKI with unconditional security (as discussed earlier). This
protocol in its most general form has parameters T and t, where 2T + t < n;
we choose t = T − 1. The protocol guarantees success if there are at most t
corruptions. If there are at most T , there will be agreement on the result which
is “success” or “failure.” Our solution is that, if the preprocessing is successful,
we run a standard MPC protocol secure against T corruptions based on the PKI
constructed. If the preprocessing fails, each party computes its output locally
using its own input and default values for the other parties. As for security,
note first that if there are more than T corruptions, all parties are näıve or
corrupted, and security is guaranteed. If there are at most T −1 = t corruptions,
the preprocessing succeeds, and the protocol is secure. If there are T corruptions,
either the preprocessing succeeds, in which case we are fine, as before. Otherwise,
all honest parties agree that it failed. Since the corrupted set occurs in at most
one of the Ai, at most one party is foreseeing, and it may securely compute its
output locally since the fully relaxed requirement only forces foreseeing parties
to be consistent. All other parties are näıve or corrupt. ut

Again, the impossibility results for broadcast naturally extend to MPC.

3 A Generic Framework for Asymmetric Trust

Until now we gave ad-hoc definitions of asymmetric security for VSS and broad-
cast. We now develop a general framework for augmenting security models with
asymmetric trust. The asymmetric security notions introduced above can be
derived as special cases. The exposition is meant as a framework for adding
asymmetric trust to protocol security models phrased via ideal functionalities
and corruptions. For concreteness we consider the UC framework.
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3.1 Basic UC framework

We consider protocols π for a party set P = {p1, . . . , pn}. A corruption pattern
is a pair of subsets Pat = (Act,Pas), Act,Pas ⊆ P, where Act ⊆ Pas; The
interpretation is that the parties pi ∈ Pas are passively corrupted and the parties
pi ∈ Act actively corrupted. We write (Act,Pas) ⊆ (Act′,Pas′) to mean
Act ⊆ Act′ and Pas ⊆ Pas′. An adversary structure is a set A = {(Act,Pas)}
of corruption patterns, where Pat ∈ A ∧Pat′ ⊆ Pat⇒ Pat′ ∈ A.

An ideal functionality is an ITM F . It can receive inputs from each pi ∈ P
(pi-inputs) and deliver outputs to each pi ∈ P (pi-outputs). Besides this, it can
receive aux-inputs and deliver aux-outputs, thought of as inputs coming from
the adversary respectively values leaked to the adversary. As an example an
ideal functionality FCom for bit commitment can be phrased as follows: On pi-
input (commit, cid, pi, pj ,m ∈ {0, 1}) produce aux-output (commit, cid, pi, pj);
Here cid is a commitment identifier. On a later aux-input (deliver, cid, pi, pj),
output (receipt, cid, pi, pj) to pj . On pi-input (open, cid, pi, pj) after receiving
pi-input (commit, cid, pi, pj ,m), produce aux-output (open, cid, pi, pj ,m). On a
later aux-input (open, cid, pi, pj), output (open, cid, pi, pj ,m) to pj .

A protocol π consists of n parties p1, . . . , pn and some ideal functionalities G,
which might, e.g., model point-to-point lines or commitment. We write G ∈ π
and π[G] to mean that π uses the ideal functionality G. An environment Z for
π is a ITM which gives inputs to the parties and gets outputs from the parties.
We denote an execution of π in Z by Execπ,Z . The environment Z also corrupts
parties.6 For a corruption pattern Pat = (Act,Pas) the environment is allowed
to see the internal state of pi ∈ Pas and control pi ∈ Act: When pi ∈ Act,
then in Execπ,Z it is Z which determines all pi-inputs to G ∈ π and receives all
pi-outputs from G ∈ π. The party pi is not run at all. Besides this, Z receives
all aux-outputs from all G ∈ π and can give aux-inputs to all G ∈ π. As an
example, in Execπ[FCom],Z the environment sees when commitments are made
and determines when to deliver receipts and openings.

The execution Execπ,Z is compared to a simulation SimF,S,Z . Here the sim-
ulator S must simulate an execution of π. E.g., S simulates aux-outputs to Z
from all G ∈ π and receives aux-inputs from Z to G ∈ π. The simulator itself
receives aux-outputs from F and gives aux-inputs to F . When Z gives a pi-
input for pi 6∈ Act, it is given to F . The simulator gives all pi-inputs to F for
pi ∈ Act. When F produces a pi-output for pi 6∈ Act, it is given to Z, but
when F produces a pi-output for pi ∈ Act, it is not given to Z. When Z gives
a pi-input to F for pi ∈ Pas, it is shown to S, and when F produces a pi-output
for pi ∈ Pas, it is shown to S.

A protocol π is called a UC secure implementation of F if there exists a
simulator S such that SimF,S,Z ≈ Execπ,Z for all Z. It is possible to restrict
Z to corrupting according to some Pat ∈ A, in which case we say that π is
A-secure (in the symmetric sense).

6 We use the formulation of the UC framework without an explicit adversary, see full
version of [5].

11



F (Xtn) runs a copy of F . When F produces aux-output z, F (Xtn) produces
aux-output z, and when F (Xtn) receives aux-input z it gives F the aux-
input z. When the (current) corruption pattern is Pat and Xtn(Pat) =
(ActIn,ActOut,PasIn,PasOut), the remaining inputs and outputs are handled
as follows:

– For pi ∈ PasIn: On pi-input x, produce aux-output (in, pi, x), and then give
F the pi-input x.

– For pi ∈ PasOut: On pi-output x from F , produce aux-output (out, pi, x), and
then produce the pi-output x.

– For pi ∈ ActIn: Ignore all pi-inputs, and on an aux-input (in, pi, x), give F
the pi-input x.

– For pi ∈ ActOut: Ignore all pi-outputs from F , and on an aux-input
(out, pi, x), produce the pi-output x.

Fig. 2. F (Xtn)

3.2 Modeling the security loss of näıve parties

To define asymmetric trust in the UC framework, we need to model the loss of
security we will allow for a party who turns out to have been näıve. To express
what we choose to allow, we introduce the concept of a corruption extension Xtn
which is a function that maps a corruption pattern Pat to a tuple

Xtn(Pat) = (ActIn,ActOut,PasIn,PasOut),

of party subsets, where

PasIn,PasOut ⊆ P \Pas and ActIn,ActOut ⊆ P \Act.

These are subsets of parties who are not corrupt but nevertheless have their
security violated in some way.

This is modeled in the simulation SimF,S,Z by giving S the following extra
power over F : For the parties pi ∈ PasIn, respectively pi ∈ PasOut, we show
S the pi-inputs to F , respectively the pi-outputs from F . For the parties pi ∈
ActIn, when Z gives a pi-input to F , it is not given to F . Instead we allow S to
specify these pi-inputs. Finally, for the parties pi ∈ ActOut, when F produces
a pi-output to Z, it is not given to Z but we allow S to specify these pi-outputs.

Of course, a functionality F may also be used as an auxiliary functionality in
a protocol. In this case the extra power is given to the environment (adversary),
see more on this below.

In order to formally incorporate the above into the UC framework without
making changes that require us to reprove the composition theorem, we define
the following way to extend any ideal functionality: For a functionality F and
any extension Xtn, let F (Xtn) be the ideal functionality in Fig. 2. We say that
π is an Xtn-secure implementation of F if π is a UC secure implementation of
F (Xtn) (tolerating environments corrupting any subset of parties).

Note that in SimF(Xtn),Z it is S which has access to the aux-inputs and
aux-outputs of F (Xtn), giving it exactly the desired extra power. Note also that
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F (Xtn) is allowed in the UC framework since it allows functionalities to know
which parties are corrupted.

Note that in the above definition we do not restrict in any way how many
parties the environment corrupts! We might however use Xtn to specify that
for some corruptions A 6∈ A the simulator is allowed to corrupt all parties in
the simulation. This allows to model that for corruptions A 6∈ A no security
guarantees are given. The notion of corruption extensions therefore subsumes
the normal notion of restricting the environment to certain corruption patterns
A.

As mentioned, extensions also apply to a functionality G used in protocol π.
For this purpose we assume that π associates to each G ∈ π an extension XtnG .
We then let π̂ denote the protocol where each G ∈ π is replaced by G(XtnG).
In Execbπ,Z it is Z which has access to the aux-inputs and outputs of G(XtnG),
granting it extra power over G in the same way as we did for the simulator before.

Definition 5. Let π be a protocol having an extension XtnG associated to each
G ∈ π, let Xtn be some extension and let F be some ideal functionality. We say
that π is an Xtn-secure implementation of F if π̂ is a UC secure implementation
of F (Xtn) (tolerating all corruption patterns). �

We can prove a composition theorem for this notion of security. For a protocol
π = π[G] and a protocol γ we use π[γ/G] to denote the protocol π where the
use of G has been replaced by γ. Let Xtnπ (Xtnγ) be the extensions π (γ)
associates to its ideal functionalities. For H ∈ π[γ/G] we associate the extension
Xtn(H) = Xtnπ(H) when H ∈ π and Xtn(H) = Xtnγ(H) when H ∈ γ.

Theorem 8. Assume that π is an Xtn-secure implementation of F and G ∈ π
with Xtnπ(G) = XtnG. Assume furthermore that γ is an XtnG-secure implemen-
tation of G. Then π[γ/G] is an Xtn-secure implementation of F .

Proof. When Xtnπ(G) = XtnG for G ∈ π, then π being an Xtn-secure imple-
mentation of F implies that π̂[G(XtnG)] is a UC secure implementation of F (Xtn).
That γ is an XtnG-secure implementation of G implies that γ̂ is a UC secure
implementation of G(XtnG). So, by the UC composition theorem, π̂[γ̂/G(XtnG)] is
a UC secure implementation of F (Xtn). Since π̂[γ/G] = π̂[γ̂/G(XtnG)] this implies
that π̂[γ/G] is a UC secure implementation of F (Xtn) which by definition implies
that π[γ/G] is an Xtn-secure implementation of F . ut

3.3 Asymmetric trust

We now use Definition 5 to express asymmetric trust, formalizing the concepts
we introduced in Section 1.4. To each pi we associate an adversary structure
Ai expressing that pi trusts that only corruption patterns Pat ∈ Ai will ac-
tually occur. We call A = (A1, . . . ,An) an aggregate adversary structure. A
symmetric adversary structure A corresponds to the aggregate adversary struc-
ture An = (A, . . . ,A). For an actually occurring corruption pattern Pat =
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(Act,Pas) we let ForeseeingA(Pat) = {pi ∈ P \ Pas|Pat ∈ Ai} and we let
NäıveA(Pat) = {pi ∈ P \ Pas|Pat 6∈ Ai}. We call pi ∈ ForeseeingA(Pat)
foreseeing and we call pi ∈ NäıveA(Pat) näıve. We model asymmetric trust
by treating the foreseeing honest parties as we normally treat the honest par-
ties in UC security and treating the corrupted parties as we do normally. For
the näıve parties we allow the simulator (environment) extra powers, using the
concepts we defined earlier. Formally, we say that a corruption extension Xtn
is an extension for A = (A1, . . . ,An) if it holds for all Pat that Xtn(Pat) =
(ActIn,ActOut,PasIn,PasOut) satisfies PasIn,PasOut,ActIn,ActOut ⊆
NäıveA(Pat). This gives a lot of granularity in how to treat the honest-but-
näıve parties: PasIn specifies the näıve parties for which the inputs are allowed
to leak to the adversary, PasOut specifies the näıve parties for which the out-
puts are allowed to leak to the adversary, ActIn specifies the näıve parties for
which the inputs might be controlled by the adversary, and ActOut specifies
the näıve parties for which the outputs might by controlled be the adversary.

To get some more structure, we name some special types of extensions, called
relaxed, semi-relaxed, strong, strict, which are defined as follows:

– Xtn is of type relaxed if it is the extension of A that specifies ActIn =
ActOut = NäıveA(Pat) for all Pat, i.e., there is no security for näıve
parties.

– Xtn is of type semi-relaxed if it is the extension ofA that specifies ActIn =
∅,ActOut = Näıve \ Act,PasIn = Näıve \ Pas,PasOut = Näıve \
Pas. I.e., the honest-but-näıve parties are guaranteed that their inputs are
contributed correctly to the computation. They are however not guaranteed
to receive correct outputs nor any privacy of their inputs or their outputs.

– Xtn is of type strong if it is the extension of A that specifies ActIn =
ActOut = ∅, PasIn = PasOut = NäıveA(Pat), i.e., näıve parties have
no privacy but may contribute their inputs and get correct results.

– Xtn is of type strict if it is the extension of A that specifies XtnG(Pat) =
(∅, ∅, ∅, ∅), i.e., there is full security for näıve parties.

If atk is one of relaxed, semi-relaxed, strong, strict, we call π an atk
A-secure implementation of F if π is an Xtn-secure implementation of F toler-
ating A, where Xtn is the extension of A of type atk. Also, if π makes use of
functionality G, we say that G is an atk functionality if the extension π assigns
to G is of type atk.

The following composition theorem is an immediate corollary to Theorem 8.

Corollary 1. Let atk,atk′ ∈ {relaxed, semi-relaxed, strong, strict}. If π
is an atk A-secure implementation of F , where G ∈ π is an atk′ functionality,
and γ is an atk′ A-secure implementation of G, then π[γ/G] is an atk A-secure
implementation of F .

Note that the notion of semi-relaxed security as defined here is equivalent to the
notions sender-independent validity and dealer-independent correctness in Sec-
tion 2. Indeed, defining broadcast and VSS by requiring a semi-relaxed secure
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implementation of a corresponding ideal functionality would define exactly these
notions.

To see the connection between symmetric security and our notions of asym-
metric security, let A be the aggregate adversary structure modeling that all
parties trust that at most t parties will be corrupted, and let π be a protocol
using only strict functionalities. In this case the simulator is given no extra cor-
ruption when at most t parties are corrupted, as all parties are foreseeing. So, as
long as at most t parties are corrupted, relaxed, semi-relaxed, strong and strict
A-security are equivalent to the usual UC t-security. If however more than t
parties are corrupted, then all honest parties are näıve, meaning e.g. that strong
security allows the simulator to see the inputs and outputs of all parties, and
relaxed security allows the simulator to specify the inputs and outputs of all
parties. So, when more than t parties are corrupted, strong A-security gives no
guarantees on the privacy of any party but still guarantees correctness for the
honest-but-näıve parties, and relaxed A-security gives no guarantees at all. Note
that giving no guarantees at all when more than t parties are corrupted is equiv-
alent to normal t-security, where simulation is only required for environments
corrupting at most t parties. Therefore relaxed security is a generalization of
normal (symmetric) UC security, and strong security is a strengthening.

4 Multi-Party Computation in the UC Framework

In this section we first formalize the notion of secure multi-party computation
in the UC framework where the parties have asymmetric trust in each other.
In Section 2.3 we already informally looked at this case in the secure-channels
model. In Section 4.2 we look at a setting where a number of certificate au-
thorities (or common reference strings) are present and where the parties have
asymmetric trust in these certificate authorities (or common reference strings).

4.1 Secure function evaluation

For simplicity we focus on secure function evaluation (SFE). SFE of f(x1, . . . , xn)
can be expressed as securely evaluating the ideal functionality Ff

SFE for secure
function evaluation of f . Essentially Ff

SFE takes an input xi from each pi, com-
putes (y1, . . . , yn) = f(x1, . . . , xn) and outputs yi securely to pi. We call π an
A SFE w/ full relaxation of f if π is a relaxed A-secure implementation of
Ff

SFE. We call π an A SFE w/ contributor-independent correctness of f if π is a
semi-relaxed A-secure implementation of Ff

SFE. For concreteness we flesh out
these notions below.

Definition 6 (SFE w/ full relaxation). The simulator has the following extra
powers:

Input Secrecy: If pi is honest and F 6∈ Ai or pi is corrupt, then the simulator
sees xi. If party pi is honest and F ∈ Ai then the simulator is not shown xi.
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Input Correctness: If pi is honest and F 6∈ Ai or pi is corrupt, then the
simulator can replace xi by some x′i. After this, the outputs (y1, . . . , yn) =
f(x′1, . . . , x

′
n) are computed, where x′i = xi for all honest pi with F ∈ Ai.

Output Secrecy: If pi is honest and F 6∈ Ai or pi is corrupt, then the sim-
ulator sees yi. If party pi is honest and F ∈ Ai then the simulator is not
shown yi.

Output Correctness: If pi is honest and F 6∈ Ai or pi is corrupt, then the
simulator can replace yi by some y′i. After this, Ff

SFE outputs y′i on behalf of
pi, where y′i = yi for all honest pi with F ∈ Ai.

Robustness: Robustness is best expressed as a condition on the protocol (as
opposed to the simulation), by requiring that all honest parties compute an
output, i.e., no honest party aborts the protocol. Alternatively, one can require
this only for the foreseeing parties, getting weak robustness. �

Definition 7 (SFE w/ contributor-independent correctness). The sim-
ulator has the following extra powers (listing only differences from Definition 6):

Input Correctness: If pi is corrupt, then the simulator can replace xi by
some x′i. After this, the outputs (y1, . . . , yn) = f(x′1, . . . , x

′
n) are computed,

where x′i = xi for all honest pi. �

These notions can be generalized to MPC w/ full relaxation and MPC w/
contributor-independent correctness by requiring a relaxed (semi-relaxed) A-
secure implementation of a more general ideal functionality F .

4.2 With asymmetrically trusted setup

We now consider a setting where some setup is given. We focus on UC security,
where setup is needed when there is no trust among the parties. We consider
two setup assumptions which have been studied previously: common reference
string (CRS) and key registration (KR), and we generalize the study to consider
asymmetric trust. Here, we only cover the KR case whereas the CRS case is
treated in the full version of the paper, using similar techniques.

Key Registration. In [1] Barak et al. gave a feasibility result for UC secure
MPC in a network which had a key registration service FKR which allows a user
Ui to register a public key pki while checking that Ui knows a corresponding
secret key. We extend this analysis of the power of key registration by analyzing
a setting where there are several key registration services (KRS’s) in which the
users have different partial trust. For completeness we also assume that the
users have different, partial trust in each other. We characterize the aggregate
adversary structures which allow to securely compute any ideal functionality in
this setting. We consider the same type of security as in [1, 6]: polynomial time
security and the protocol is only required to deliver outputs if all parties are
honest. This is modeled by allowing the simulator to decide when and if honest
outputs from F to Z are delivered in SimF,S,Z .
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We model the KRS’s as parties KR = {KRk}. We then add n users U =
{U1, . . . , Un}, making the party set P = KR ∪ U . The users are the parties
which want to compute some ideal functionality FU among them.7 We also add
a strict functionality for authenticated, asynchronous point-to-point communica-
tion among the users and between the users and the KRS’s, and we add a strict
functionality for secure, asynchronous point-to-point communication among the
users.8 Finally we need that each user can give a proof of possession (PoP) of
the secret key when it registers a public key. For this purpose we postulate an
ideal functionality POP. Let gen be the generator pk = gen(r) used to generate
public keys (we can wlog assume that the randomness r constitutes the private
key). We assume that POP behaves as follows: On input (Ui,KRk, ri) from Ui,
output (Ui,KRk, pki = gen(ri)) to KRk. This models that Ui gives pki to KRk

and then somehow proves knowledge of ri such that pki = gen(ri).
By Ui registering a public key at KRk we then mean that Ui samples a

random public key pki ← gen(ri) and inputs (Ui,KRk, ri) securely to POP. The
honest behavior of each KRk is as follows: The first time it sees POP output
(Ui,KRk, pki) for Ui it sends (Ui,KRk, pki) to all users Uj using authenticated
point-to-point communication.

Since the behavior of KRk is fixed and the behavior of POP is given by gen,
we specify a protocol by π = (gen, U1, . . . , Un). For convenience we assume that
each Ui starts the protocol by registering some pki,k with each KRk. Then Ui

waits for each KRk to send some pkj,k for each Uj ∈ U and stores all these keys.
After this registration phase the users then proceed to run the actual protocol.
We can therefore in the specification of pi assume that it knows the keys pkk,j .
We call such a π = (gen, U1, . . . , Un) a KR-protocol.

As for trust, we consider only active corruptions, so that Pat = (Act,Act)
for all patterns. We therefore write Act ∈ A and consider A ∈ 2P . We associate
no trust to the KRS’s. That is, we assume that AKRk

= 2P for each KRS.
To each Ui we associate a corruption structure Ai ⊆ 2P . We call (A1, . . . ,An)
complete for the KR setting if it allows to securely compute any efficient ideal
functionality FU among the users using a KR protocol.

For Acti ∈ Ai we let ActUi = Acti ∩ U and ActKRi = Acti ∩ KR. We
say that two users Ui 6= Uj are KR connected if it holds for all Acti ∈ Ai and
Actj ∈ Aj that either ActKRi 6= KR or ActKRj 6= KR or ActUi ∪ActUj 6= U .
That is, together, Ui and Uj cannot imagine a scenario where both of them think
that all KRS’s might be corrupted and where together they think all users might
be corrupted.

7 We say that FP′ is among P ′ if it ignores pi-inputs for P\P ′ and gives no pi-outputs
for P \ P ′.

8 Since secure, asynchronous point-to-point communication has a normal UC secure
implementation given authenticated channels and several standard complexity as-
sumptions, this strict ideal functionality can be replaced with any such implemen-
tation to get an equivalent model with only authenticated communication, using
Corollary 1.
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Theorem 9. An aggregate adversary structure A = (A1, . . . ,An) is complete
for the KR setting iff all pairs of distinct users are KR connected in A.

The proof of Theorem 9 is given in the full version of the paper. A special case
of Theorem 9 is when the users have no trust in each other (AUi = U for all Ui)
in which case the condition can be phrased as: There exists at most one user
who thinks that all KRS’s can be corrupted.

Conclusion

We proposed a notion of asymmetric trust in protocol security and gave a general
definition of asymmetric secure MPC and gave specialized definitions of asym-
metric secure broadcast, VSS, and SFE. We explored the feasibility of broadcast,
VSS, and MPC in various models with asymmetric trust. A tight characteriza-
tion of the feasibility of broadcast has been found for asymmetric trust, and
nontrivial upper and lower bounds for VSS, and we have shown how to tolerate
strictly stronger adversaries in MPC than with symmetric trust. It is an open
problem to completely characterize the aggregate adversary structures that allow
for MPC in the case with active adversaries and no set-up.
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