
A Simple Variant of the Merkle-Damg̊ard

Scheme with a Permutation

Shoichi Hirose1, Je Hong Park2, and Aaram Yun2

1 Graduate School of Engineering, The University of Fukui
hirose@fuee.fukui-u.ac.jp

2 ETRI Network & Communication Security Division
jhpark@etri.re.kr, aaramyun@gmail.com

Abstract. We propose a new composition scheme for hash functions.
It is a variant of the Merkle-Damg̊ard construction with a permutation
applied right before the processing of the last message block. We ana-
lyze the security of this scheme using the indifferentiability formalism,
which was first adopted by Coron et al. to the analysis of hash func-
tions. And we study the security of simple MAC constructions out of
this scheme. Finally, we also discuss the random oracle indifferentiability
of this scheme with a double-block-length compression function or the
Davies-Meyer compression function composed of a block cipher.

1 Introduction

Background. Merkle-Damg̊ard [19, 12] is an iterative hash function construction.
Given a fixed-input-length (FIL) compression function, it combines the output of
the compression function in a serial fashion to produce a hash function that can
process strings of arbitrary length.3 While it is a clean design with proven col-
lision resistance, it suffers the extension property; one can compute H(M1‖M2)
from H(M1) even without the knowledge of M1.

Suppose that we try to use a Merkle-Damg̊ard (MD) hash function for mes-
sage authentication. There are many proposals for hash-based MACs, but cur-
rently the most popular hash-based MAC is definitely HMAC [3, 2]. It has a
simple structure, and also it has rigorous security proofs. But, given a hash
function H(·), one of the best ways to make a MAC out of H is the prefix
construction [22]:

MK(x)
def

= H(K‖x).

Indeed, the efficiency of the above construction would be almost twice than that
of the HMAC, for short messages, and we know that if H(·) is a random oracle,
rather than a concrete hash algorithm, then the construction gives a secure
MAC. Unfortunately, due to the extension property, the prefix construction is
not secure when the underlying hash function is an MD hash function; given a

3 Or up to some large number (264 in case of SHA-1, for example) depending on the
padding and other specific details.

2

message x and its MAC MK(x) = H(K‖x), the attacker can easily forge another
message x′, which has x as its prefix, and compute the MAC MK(x′).

The goal of HMAC was to design an efficient MAC with security proofs,
out of already widely deployed MD hash functions. Therefore the designers of
HMAC had to ‘fix’ the extension property of the underlying MD hash function,
at the upper MAC construction level.

But then we may consider another way, namely, to start freshly with a hash
function design without such structural flaws like the extension property. Then
perhaps we may use much simpler hash-based MACs such as the prefix construc-
tion H(K‖M). Indeed, after Wang’s attacks on many popular hash functions,
there are renewed interests in the design of hash functions. So this would be a
good opportunity to consider an alternative to the MD scheme.

In CRYPTO 2005, Coron et al. introduced new methodology for assessing
generic, structural properties of hash function constructions [11]. They applied
the notion of indifferentiability, which was first introduced by Maurer et al. [16],
to the analysis of hash functions. Coron et al. analyzed the structural property
of hash function constructions by first swapping the underlying compression
function with a FIL random oracle, then comparing the resulting hash function
with a true random oracle. If no efficient distinguisher can tell the two objects
apart, then the construction is considered secure, i.e., it has no structural flaws.
The notion of indifferentiability is an appropriate framework to express these
ideas rigorously. In fact, Coron et al. showed that the MD scheme is not indif-
ferentiable from a random oracle, and suggested a few modifications for the MD
scheme so that all of these are indifferentiable from a random oracle.

Hence, we now have a rigorous methodology for assessing the structural flaws
of a hash function, such as the extension property of MD scheme, which was the
main obstacle for adopting the simple constructions like the prefix construc-
tion instead of HMAC. Now all we need is an actual design for hash function
composition scheme which is efficient and structurally sound (in the sense of
random oracle indifferentiability), and which admits a direct and efficient us-
age as a MAC. Then in the future hash function design, we may adopt such a
construction as an alternative to the MD scheme.

Our contribution. We propose a simple and efficient hash composition scheme.
We call it Merkle-Damg̊ard with a permutation (MDP). It is almost identical
to the plain Merkle-Damg̊ard scheme, but just before the last message block is
processed, a permutation π is applied: for a message M = M1M2 · · ·Mk,

H(M) = F (π(F (· · ·F (F (IV , M1), M2) · · · , Mk−1)), Mk).

In this paper, we describe the MDP composition scheme, and prove that it
satisfies many desirable security properties:

– It is collision resistant if the underlying compression function is.
– It is indifferentiable from a random oracle when a FIL random oracle is used

as the compression function.

3

– It is also a PRF when keyed via the IV if the compression function is a PRF,
secure against a (very mild) related-key attack when keyed via the chaining
variable. In addition, if the compression function is also a PRF when keyed
via the input message block, then MDP yields a PRF when key is prepended
to the message: M 7→ H(K‖M) for a secret key K.

– It is unforgeable if the underlying compression function is an unforgeable
FIL MAC with a dedicated key input.

Despite the miniscule modification MDP makes to the original MD scheme,
we see that it has many benefits. MDP loses essentially none of the efficiency of
the MD scheme. As categorized above, MDP preserves collision resistance, ran-
dom oracle and unforgeability. Furthermore it ‘almost’ preserves PRF property,
with a weak related-key assumption. So not only it gives a strong hash function,
as a PRF it also gives a secure MAC mechanism which is twice as fast as HMAC
for short messages.

We also study the random oracle indifferentiability of MDP when the un-
derlying compression function has some structure; we consider MDP with two
specific type of compression functions. The one is a double-block-length (DBL)
compression function of the form F (s‖x) = f(s‖x)‖f(p(s)‖x), where f is a
smaller compression function and p is a permutation. The other is the Davies-
Meyer compression function. We show that MDP emulates a VIL random oracle
if

– f is a random oracle and π and p are chosen appropriately in the DBL
compression function F ; or

– F is the Davies-Meyer compression function in the ideal cipher model.

Related Works. A hash function composition scheme very similar to MDP was
suggested before; in a public comment to a FIPS 180-2 draft, Kelsey [14] pro-
posed a simple enhancement to SHA-2 hash functions, which was originally sug-
gested by Ferguson. Their scheme is a special case of MDP, when the permutation
π is equal to π(x) = x⊕C, where C is a fixed, non-zero offset. Their motivation
was to eliminate the extension property of MD hash functions with least modi-
fication. But, as far as the authors know, the security of this proposal was never
rigorously proven before.

While proposing indifferentiability from a random oracle as an important
security goal for a hash function, Coron et al. also proposed four constructions
which satisfy indifferentiability from a random oracle [11], thereby proving that
such schemes exist. Also, Bellare and Ristenpart proposed the EMD construc-
tion [6]. Probably it is the first paper that succeeded in finding a serious practical
alternative to the MD scheme which meets the raised security goals (like, indif-
ferentiability to a random oracle, among others). Similar to MDP, EMD is also
a variant of the MD scheme. Also, EMD achieves essentially the same goals as
MDP, but there are a few differences:

– The structure of MDP is simpler than that of EMD; this is reflected in
the fact that MDP is slightly more efficient than EMD, especially for short
messages.

4

– When used as a MAC by key-via-IV strategy, MDP needs slightly stronger
assumption than in the case of EMD; assuming that the compression function
is secure as PRF under a very weak related-key attack, we prove that the
keyed MDP is secure as a PRF. Therefore, at least for PRFness, MDP is not
a ‘multi-property-preserving’ transform like EMD.

– On the other hand, MDP needs only one key in the above situation, while
EMD needs two separate keys, while achieving the security of only one key
due to the divide-and-conquer attack. One may consider a one-key version
of EMD by employing some key derivation function similar to the case of
HMAC, but then one would need additional assumption on the compres-
sion function, namely PRF-security under some related-key attacks, which
is essentially the same type of assumption needed for MDP.

– Given an MDP hash function H , one can use H as a black-box to obtain a
secure MAC, by prefix construction H(K‖M). This seems to be difficult in
the case of EMD.

Chang et al. [9] further discussed the indifferentiability from the random
oracle for the MD scheme with prefix-free encoding. They considered compres-
sion functions consisting of a block cipher [21] and DBL compression functions
of the same form we considered. Nandi [20] introduced this formalization of a
class of DBL compression functions and discussed the collision-resistance of hash
functions composed of them.

In studying MAC properties of MDP, we follow two directions. First, we show
that MDP gives a very efficient MAC by showing its pseudorandomness under
the assumption that the compression function is a PRF-security against a mild
form of related-key attacks. For this, we use a restricted version of the notion of
PRF-security against related-key attacks formalized and studied by Bellare and
Kohno [5]. Essentially, the proof can be considered as a related-key version of
the proof for prefix-free PRF security of the cascade construction given in [4].

We are also interested in seeing whether security of MDP as MAC can be
proved under weaker assumptions, similar to the security of HMAC under a
weaker-than-PRF assumption on the compression function [2]. After An and
Bellare [1] initiated such investigations, Maurer and Sjödin [17] provided sev-
eral transforms as well as a general security proof technique. As stated in [6],
these works consider the setting where compression functions and hash functions
are families indexed by a dedicated key, and only focus on MAC preservation
when the underlying compression function is a MAC itself, namely, that it is an
unforgeable FIL MAC.

Recently, Bellare and Ristenpart [7] further considered several hash func-
tion constructions in the dedicated-key setting, and provided a multi-property-
preservation oriented treatment of them.

Organization of the paper. In Section 2, we provide basic definitions of PRFs,
RKA-secure PRFs, indifferentiability, and unforgeability. We also fix notational
conventions in this section. In Section 3, we formally define the MDP construc-
tion. In Section 4, we analyze the security of MDP. Section 4 consists of three

5

parts; first, we prove that MDP is indifferentiable from a random oracle, and
then prove that MDP gives a secure PRF under necessary assumptions. And we
prove that MDP yields a secure MAC under a weaker-than-PRF assumption. In
Section 5, we focus on the indifferentiability of MDP based on two specific types
of compression function: one is a DBL compression function and the other is the
Davies-Meyer compression function composed of a block cipher. Detailed proofs
for several lemmas and theorems in Section 4 are described in the full version of
this paper [13].

2 Definitions

Pseudorandom Functions. Let F : K × D → R be a function family from D to
R indexed by keys K ∈ K. Usually we’ll use FK(x) as shorthand for F (K, x).
Let Maps(D,R) denote the set of all functions f : D → R. Given an adversary
A(g) with access to an oracle g(·), we define its PRF-advantage over F as

Advprf
F (A) = Pr

[

A(FK)⇒ 1 |K
$

← K
]

− Pr
[

A(ρ)⇒ 1 | ρ
$

← Maps(D,R)
]

Informally, we say that F is a PRF when no efficient adversary A can have
any significant PRF-advantage over F .

RKA-secure PRFs. Related-key attacks were considered in cryptanalysis of
block ciphers, and many modern block ciphers are designed against such at-
tacks. Bellare and Kohno [5] first gave a formal definition to related-key attacks
and provided a theoretical treatment. They extended the formal definition of
PRFs to PRFs secure against related-key attacks (RKA-secure PRFs).

According to the definition given by Bellare and Kohno, they consider a set
Φ of related-key-deriving (RKD) functions φ : K → K. As in the case of the plain
PRFs, an adversary cannot access the given secret key K directly, but she can
query the PRF with respect to other keys φ(K) by selecting a RKD function φ
from Φ. The set Φ is a parameter of the definition, and it formalizes the varying
capabilities of related-key adversaries on different situations.

In this paper, we need only a very weak adversary in terms of related-key
attacks: the RKD function set Φ consists of only two functions: Φ = {id , π},
where id : K → K is the identity function, and π : K → K is a permutation. We’ll
refer this type of related-key attacks as the π-related-key attacks and formalize
in the following way. Given an adversary A(g, g′) with access to a pair of oracles
g(·) and g′(·), we define its PRF-advantage over F with respect to π-related-key
attacks as

Advprf-rka
π,F (A) =

Pr
[

A(FK , Fπ(K))⇒ 1 |K
$

← K
]

− Pr
[

A(ρ, ρ′)⇒ 1 | ρ, ρ′
$

← Maps(D,R)
]

.

Note that this formalism is equivalent to that of Bellare and Kohno, when
Φ = {id , π} is used.

6

Again informally, we say that F is a π-RKA-secure PRF when no efficient ad-
versary A can have any significant advantage over F . Since π-related-key attack
is the only kind of related-key attacks that we consider in this paper, sometimes
we’ll abuse the terminology and call F simply as a RKA-secure PRF.

Indifferentiability. We use the indifferentiability framework [16, 11] to assess the
security of the MDP. Consider a cryptosystem C = C(F) with oracle access
to an ideal primitive F . Also consider an ideal primitive H and a simulator
S = S(H) which has oracle access to H. C is supposed to be a ‘construction’
involving F . For example, F could be a FIL random oracle, and C then could
be the MD hash function using F as the compression function. The goal of the
simulator S(H) is to mimic F in order to convince an adversary that H is C.
Let A be an adversary with access to two oracles. We define the differentiability
advantage of A against C with respect to S as:

Advdiff
C,S(A) = Pr [A(C(F),F)⇒ 1]− Pr [A(H, S(H))⇒ 1] .

Informally, we say that C(F) is indifferentiable from H if there exists a
simulator S(H) so that no efficient adversary A can have any significant differ-
entiability advantage against C with respect to S.

Unforgeability. A MAC is a family of functions F : K ×M → C. The security
of a MAC is measured via its resistance to existential forgery under an adaptive
chosen-message attack. The MAC-advantage of a forger A over F is

Advmac
F (A) = Pr

[

A(FK , VfFK
) forges |K

$

← K
]

.

A forger A queries to the oracle FK(·) for adaptively chosen messages and
learns the corresponding tag values. It then returns a forgery (M, τ). The forger
A is considered successful if it makes a verification query (M, τ) to the oracle
VfFK

(·, ·), and confirms that FK(M) = τ but M was not queried to FK(·). We
refer to a forger A of this kind as a (t, q, l, ǫ)-forger if Advmac

F (A) ≥ ǫ, where t, q
and l are upper bounds on the running time, the number of messages, and the
maximal length (in bits) of each oracle query including the forgery message M ,
respectively. Informally, a MAC is considered secure against existential forgery
under an adaptive chosen-message attack, if there is no (t, q, l, ǫ)-forger, even for
very high values of t, q and l, and very small values of ǫ.

Notation. Let b be the size of the message blocks, and c the size of the chaining
variables. As usually is in popular hash functions, we assume that c ≤ b. Then
the compression function F (s, x) has the following form:

F : {0, 1}c × {0, 1}b→ {0, 1}c.

Let C = {0, 1}c and B = {0, 1}b to abbreviate the above as F : C × B → C.
We denote by M1‖M2 the concatenation of bitstrings M1 and M2. We will

often abbreviate M1‖M2‖ · · · ‖Mk simply as M1M2 · · ·Mk. Let Bi be the set of

7

all messages of form M1M2 · · ·Mi, where Mj ∈ B for all j = 1, . . . , i. Clearly,
B0 = {ǫ}, where ǫ means the null bitstring, the bitstring of length 0. Let’s define
B∗ = ∪∞i=0B

i, B+ = ∪∞i=1B
i, and B≤k = ∪k

i=1B
i.

We will process messages block by block. The notation M1M2 · · ·Mk ←
parse(M) will mean that M = M1‖M2‖ · · · ‖Mk and |Mi| = b for all i = 1,

. . . , k − 1, and |Mk| ≤ b. We denote by s
$

← S the operation of selecting a ran-
dom element from S (the uniform probability distribution over S is assumed).

We sometimes use the O-notation. This is not about asymptotics, but we
use this notation to hide unimportant small constants which are dependent on
specific machine formalisms, and whose values can be determined from the proof.

3 The MDP Construction

Given F : C × B → C, we define F ∗ : C × B∗ → C as follows:

F ∗(s, M)
def

=

{

s if k = 0, i.e., M = ǫ,

F (F ∗(s, M1M2 · · ·Mk−1), Mk) otherwise,

for M = M1M2 · · ·Mk (Mi ∈ B for all i). This is the plain Merkle-Damg̊ard
iteration of F . Now we define F ◦

π : C × B+ → C as follows:

F ◦
π (s, M1M2 · · ·Mk)

def

= F (π(F ∗(s, M1 · · ·Mk−1)), Mk).

where π is a permutation applied right before the last iteration. π is a fixed
permutation given as a parameter of the definition. We require both π and π−1

to be efficiently computable. Often we omit π from the notation F ◦
π and simply

write F ◦.
The domain of F ◦ is B+ = ∪∞i=1B

i = ∪∞i=1{0, 1}bi. In order to let MDP
process messages of arbitrary lengths (up to 2l, for some large number l satisfying

0 < l ≤ b), we have to use a padding function pad : ∪2l

i=0{0, 1}i → B+ with the
following property: the last block of pad(M) encodes the l-bit representation of
the length |M | of M . For example, the SHA-1’s padding rule could be used.

Finally, given a compression function F : C × B → C, a padding function
pad, a permutation π, and a fixed IV IV ∈ C, we formally define the MDP
(Merkle-Damg̊ard with a Permutation) hash function as

MDP(M)
def

= F ◦
π (IV , pad(M)).

When we want to emphasize the dependency of MDP(M) to F and π, we
sometimes use the notation MDP[F, π](M).

Figure 1 illustrates the structure of MDP. One can consider the MDP con-
struction as a minor variant of the MD scheme with the MD strengthening.
Therefore the efficiency of the MDP is exactly the same as the Strengthened
MD (SMD).

More precisely, let’s write the number of compression function invocations
needed to compute the hash value of an ℓ-bit string as N(ℓ). Suppose that we use

8

πF F F F

M1 M2 Mk-1 Mk

IV H(M)

Fig. 1. The structure of MDP

the padding function similar to the padding function of SHA-1: given a message
M of length ℓ, append the bit ‘1’ to the end of the message, followed by k zero
bits, where k is the smallest non-negative solution to the equation ℓ+1+k ≡ b−l
(mod b). Then append the l-bit representation of the number ℓ. In case of SHA-1,
we have b = 512, and l = 64. Then for MDP (and SMD), the following holds:

N(ℓ) =

{

⌈ ℓ
b⌉ if ℓ mod b < b− l,

⌈ ℓ
b⌉+ 1 otherwise.

For comparison, this is slightly better than the efficiency of EMD; for EMD
the following holds:

N(ℓ) =

{

⌈ ℓ
b⌉ if ℓ mod b < b − c− l,

⌈ ℓ
b⌉+ 1 otherwise

Concretely, if we take the parameters of SHA-1, that is, b = 512, c = 160,
and l = 64, then for messages of length between 288 and 447, EMD needs one
more invocation than MDP. On the average, EMD needs c/b more invocations
of the compression function than MDP. Again with the parameters of SHA-1,
c/b ≈ 0.31.

4 Security of MDP

In this section, we study the security of MDP and prove that MDP indeed meets
all the security goals that we wanted.

4.1 Collision Resistance

First, MDP is collision-resistant. Given a collision-resistant compression function
F , MDP construction from F is also collision-resistant. The proof is trivial; since
the structure of MDP is very similar to the MD scheme, we may follow the proof
of collision resistance of the MD almost verbatim.

9

4.2 Indifferentiability from Random Oracle

We show that MDP is indifferentiable from a random oracle H, when a FIL ran-
dom oracle F is used as the compression function. Therefore we need a simulator
SF so that no efficient adversary can distinguish (or rather, differentiate) the pair
(MDP[F , π],F) from the pair (H, SF). We will use the simulator illustrated in
Figure 2.

Initialize:

V ← S ← {IV }

Interface F(s, x):

100: V ← V ∪ {s}
101: if F (s, x) = ⊥ then

102: if s ∈ S then

103: t
$

← C \
`

V ∪ π(S) ∪ π−1(V) ∪ Pπ

´

104: S ← S ∪ {t}
105: F (s, x)← t

106: else if π−1(s) ∈ S then

107: F (s, x)←H(M‖x), where F ∗(IV , M) = π−1(s)
108: else

109: F (s, x)
$

← C

110: V ← V ∪ {F (s, x)}

111: return F (s, x)

Fig. 2. Pseudocode for the simulator SF

SF maintains a structure F (s, x) where it stores previously selected value
of the query SF(s, x). Initially F (s, x) = ⊥ for all s and x, where ⊥ means
undefined. SF also maintains two sets V and S. Both are initially set to the
singleton set {IV }. As more queries are inquired, new elements are added to the
sets. Note that elements never leave the sets.

When queried SF(s, x), if F (s, x) = ⊥, SF will choose a value t randomly
depending on the algorithm in Figure 2, and define F (s, x) ← t. If we consider

the labeled directed graph G whose edges are s
x
→ F (s, x) for all F (s, x) 6= ⊥,

then we can see that V denotes the set of all vertices of G. On the other hand,
S is then the set of all vertices that can be reached by following a path from
the vertex IV . In order to prove the indifferentiability of MDP, we need a few
lemmas about the simulator SF :

Lemma 1. At any time during the execution of the simulator SF , if s ∈ S for
some s, then F ∗(IV , M) = s for some M . Conversely, if F ∗(IV , M) 6= ⊥, then
F ∗(IV , M) ∈ S.

Lemma 2. Suppose that both F ∗(IV , M) and F ∗(IV , M ′) are defined. Then,
F ∗(IV , M) = F ∗(IV , M ′) if and only if M = M ′.

10

Lemma 3. Suppose that both F ∗(IV , M) and F ∗(IV , M ′) are defined. Then,
F ∗(IV , M) 6= π(F ∗(IV , M ′)) and F ∗(IV , M) 6= π−1(F ∗(IV , M ′)).

Lemmas 1 and 2 essentially say that the subgraph S of V is in fact a rooted
tree with IV as the root. Note that, because these three lemmas are only about
the subgraph S, as long as the lines 102 to 105 are intact, the lines 106 to 109 do
not change the validity of the lemmas. Also, due to Lemma 1 and 2, the line 107
in the pseudocode in Figure 2 works correctly. We will omit the proofs of the
three lemmas since they are straightforward.

The basic intuition involved in the pseudocode of SF is this: the permutation
π disrupts the extension property of the MD scheme if it has only a small number
of fixed points and IV is not a fixed point. Now, the best strategy of an adversary
seems to be computing F ∗(IV , M) for various messages M (by querying the FIL
oracle), until one of the following happens:

– The adversary finds two distinct messages M , M ′ such that F ∗(IV , M) =
F ∗(IV , M ′): in this case, we have H(M‖P) = H(M ′‖P) for any message
block P , if H is the MDP. But the probability of this equality is very low, if
H is a true random oracle.

– The adversary finds two distinct messages M , M ′ such that F ∗(IV , M) =
π(F ∗(IV , M ′)): in this case, we have H(M‖P‖Q) = F (π(H(M ′‖P)), Q) for
any message block P and Q, if H is the MDP. But similarly the probability of
this equality is very low, if H is a true random oracle, because the simulator
which selects the value F (π(H(M ′‖P)), Q) has information about Q, but it
doesn’t have access to the adversarial choice of P .

Other minor strategy is to find a message M such that F ∗(IV , M) is a fixed
point of π or a part of a previous query to F .

The simulator SF is designed so that Lemmas 1, 2, and 3 hold, which delays
the above failing situations as late as possible. This is achieved by careful ex-
pansion of the tree S at line 103. Note that by birthday attack, the attacker can
eventually find the message pair M , M ′ satisfying F ∗(IV , M) equals F ∗(IV , M ′)
or π(F ∗(IV , M ′)). Therefore, MDP can be indifferentiable from a random oracle
only up to the birthday bound.4

Now, the indifferentiability of MDP is expressed in the next theorem.

Theorem 1. Let A be an adversary distinguishing the pairs (MDP[F , π],F) and
(H, SF), where the simulator SF is defined in Fig. 2. Let π be a permutation on
C and Pπ be the set of its fixed points such that IV 6∈ Pπ. Then,

Advdiff
MDP[F ,π],SF

(A) ≤
5(lqV + qF)(3lqV + qF + 1)

2c+1
+

lqV qF

2c
+
|Pπ|(2lqV + qF)

2c
,

4 MDP, being random-oracle indifferentiable, prevents the extension property. But
once a colliding message pair due to an internal MD collision is found, for example
by birthday attack, or by insecurity of the compression function, any common suffix
can be added to the message pair. This serious effect of extension attacks is not
resolved by MDP (nor by other similarly proposed composition schemes).

11

where qF is the number of queries to the FIL oracle, and qV the number of
queries to the VIL oracle. l is the maximum number of message blocks for each
VIL query. c is the size of the chaining variables. Moreover, SF makes at most
qF queries and runs in time O(qF

2).

4.3 MDP Yields Secure PRFs

In this section, we show that when the compression function F is a PRF secure
against π-related-key attack, then MDP yields a secure PRF. This construction
could be used as an alternative to HMAC or NMAC.

In order to use MDP as a PRF, we need to provide a keying strategy to
MDP. We may consider at least two straightforward such approaches5.

– Keyed-MDP: We may use a secret key K
$

← C instead of the fixed IV, and
define a MAC scheme out of MDP by KMDPK(M) = F ◦(K, pad(M)).

– Prefix-MDP: Given a message M and a key K
$

← B, we define PMDPK(M) =
MDP(K‖M), i.e., the secret prefix construction. Note that PMDPK(M) =
KMDPF (IV ,K)(M). Although less efficient than Keyed-MDP, this has a ben-
efit that it may use the underlying hash function as a black-box.

Remark 1. If KMDPK(M) were a secure PRF whenever F is a secure PRF, then
we may say that MDP preserves the PRF property, in the sense of Bellare and
Ristenpart [6]. Unfortunately this is not the case; if, for example, F satisfies
FK(x) = Fπ(K)(x) for any K and x, then the MDP construction reduces to the
plain Merkle-Damg̊ard scheme, which is vulnerable to the extension attack.

Related-Key Multi-Oracles In order to prove the security of the two MAC
schemes, first we need to introduce the notion of multi-oracle distinguishers.
This was first given in [4] in order to prove that, if the MD scheme is keyed via
IV, then the resulting iterated construction is PRF with respect to prefix-free
adversaries. What we actually need is not this notion itself, but an extension of
it, which we call the related-key multi-oracle distinguisher.

Given a π-RKA-secure PRF F , consider the problem of distinguishing a
2m-tuple of instances of F , from a 2m-tuple of independent random functions.
But, for the 2m-tuple of F , we choose m of the keys K1, . . . Km randomly and
independently, and use π(K1), . . . , π(Km) as the other m keys. That is, we
would like to distinguish the distribution of the following 2m-tuple of functions:

(FK1
, Fπ(K1), . . . , FKm

, Fπ(Km))

from that of 2m-tuple of independent random functions.

5 We may consider Keyed-MDP as analogous to NMAC, and Prefix-MDP as analogous
to HMAC.

12

We define the advantage of a distinguisher A(g1, g
′
1, . . . , gm, g′m) with access

to 2m oracles g1, g′1, g2, g′2, . . . , gm, g′m as follows:

Advm-prf-rka
π,F (A) = Pr

[

A(FK1
, Fπ(K1), . . . , FKm

, Fπ(Km))⇒ 1 |K1, . . . , Km
$

← C
]

− Pr
[

A(ρ1, ρ
′
1, . . . , ρm, ρ′m)⇒ 1 | ρ1, ρ

′
1, . . . , ρm, ρ′m

$

← Maps(B, C)
]

Lemma 4 (Related-Key Multi-Oracle Lemma). Suppose that A is a dis-
tinguisher with access to 2m oracles g1, g

′
1, . . . , gm, g′m as above, and suppose

that A has time-complexity at most t, and makes at most q queries. Then we
can construct an adversary B(g, g′) attacking the π-RKA-security of F such that

Advm-prf-rka
π,F (A) = m · Advprf-rka

π,F (B).

B makes at most q queries. And the running time of B is bounded by

t + O(q · Time(F) + qb log q + qc).

Security of Keyed-MDP Now that we have Lemma 4, we prove the following
lemma which connects the PRF-security of the Keyed-MDP with the related-key
multi-oracles:

Lemma 5 (Reduction to the Related-Key Multi-Oracle). Let A be a
PRF-adversary against KMDP. Suppose that A has time-complexity at most t,
and makes at most q queries, and each query has the length at most l. Then we
can construct a related-key multi-oracle distinguisher B(g1, g

′
1, . . . , gq, g

′
q) with

access to 2q oracles so that the following holds:

Advprf
KMDP

(A) = l · Advq-prf-rka
π,F (B).

B makes at most q queries, and the running time of B is bounded by

t + O(q((l − 1)(b log q + Time(F)) + c)).

Combining Lemma 4 and 5, we obtain the following theorem:

Theorem 2 (PRF-Security of Keyed-MDP). Let A be a PRF-adversary
against KMDP. Suppose that A has time-complexity at most t, and makes at
most q queries, and each query has the length at most l. Then we can construct
an adversary B(g, g′) against the π-RKA-secure PRF F such that

Advprf
KMDP

(A) = lq ·Advprf-rka
π,F (B).

B makes at most q queries, and the running time of B is bounded by

t + O(lq(b log q + Time(F) + c)).

13

Security of Prefix-MDP We prove the security of the Prefix-MDP scheme
by lifting the security proof for the Keyed-MDP. Remember that

PMDPK(M) = MDP(K‖M) = KMDPF (IV ,K)(M).

Hence, here we have to regard F (s, x) as a function family indexed by the data
input x. We express this formally by defining a dual function family F̄ : B×C → C
of F :

F̄ (K, x)
def

= F (x, K).

In order to prove the security of the Prefix-MDP, in addition to the previous
assumption that F is a π-RKA-secure PRF, we also need to assume that F is a
PRF when keyed by its data input, i.e., F̄ is a PRF. Then we have:

Lemma 6. Let A be a PRF-adversary against PMDP that has time-complexity
at most t. Then we can construct a PRF-adversary BF̄ (g) against the dual PRF
F̄ such that

Advprf
PMDP

(A) = Advprf
KMDP

(A) + Advprf
F̄

(BF̄).

Furthermore, BF̄ has time complexity at most t, and makes only 1 oracle query.

Theorem 3 (PRF-Security of Prefix-MDP). Let A be a PRF-adversary
against PMDP. Suppose that A has time-complexity at most t, and makes at
most q queries, and each query has the length at most l. Then we can construct
an adversary BF (g, g′) against the π-RKA-secure PRF F , and a PRF-adversary
BF̄ (g) against the dual PRF F̄ so that

Advprf
PMDP

(A) = lq ·Advprf-rka
π,F (BF) + Advprf

F̄
(BF̄).

Furthermore, BF̄ has time complexity at most t, and makes only 1 oracle query.

Remark 2. Even if F is a secure PRF, it could be vulnerable to a π-related-key
attack. For example, Contini and Yin [10] exhibited a related-key distinguish-
ing attack on the keyed MD5 compression function using pseudo-collisions of
MD5 [8]. This attack shows that the keyed MD5 compression function is not a
good π-RKA-secure PRF, when π(x) = x⊕∆.

Remark 3. Kim et al. [15], and also Contini and Yin [10], showed how to con-
struct various attacks on HMAC and NMAC using weakness of keyed compres-
sion functions like MD4. The same attacks will work against PMDP under the
same keyed compression functions.

4.4 Unforgeability Preservation

We may use MDP as a MAC under a different keying strategy from the above
section. Now, we consider MDP in the dedicated-key setting, where a compres-
sion function is a MAC F : K × C × B → C with a dedicated key input.

Theorem 4. Let π be a permutation on C with no fixed point. Let A be a
(t, q, l, ǫ)-forger of MDP[F, π]. Then we can construct a (t′, q′, l′, ǫ′)-forger B
attacking the FIL MAC F , where q′ = qN(l) + N(l) − 1, l′ = b + c, and

ǫ′ = 2ǫ/(3q′
2

+ 3q′ + 2). Also, the running time t′ is essentially that of A with
some small overhead that is obvious from the construction of B [17].

14

5 Further Results on Indifferentiability

5.1 MDP with a Double-Block-Length Compression Function

A compression function F is called double-block-length (DBL) if it is composed
of a smaller compression function f and the output length of F is twice as large
as that of f . We consider a DBL compression function of the form defined in the
following definition.

Definition 1. Let c be an even integer, and f : C×B → {0, 1}c/2. F : C×B → C
is a DBL compression function such that F (s, x) = f(s, x)‖f(p(s), x), where
s ∈ C, x ∈ B, and p is an involution on C with no fixed points.

The following theorem states that MDP[F, π] is indifferentiable from a VIL
random oracle if f is a FIL random oracle and π is chosen appropriately.

Theorem 5. Let F be a DBL compression function defined in Definition 1. Let
π be a permutation on C and Pπ,p = {u |u ∈ C, and π(u) = u or p(u)}. Let A
be an adversary distinguishing the pairs (MDP[F , π],F) and (H, SF), where the
simulator SF is defined in Fig. 3. Suppose that IV 6∈ Pπ,p. Then,

Advdiff
MDP[F ,π],SF

(A) ≤
7(lqV + qF)(3lqV + qF + 1) + lqV qF + |Pπ,p|(2lqV + qF)

2c
,

where qF is the number of queries to the FIL oracle, and qV the number of
queries to the VIL oracle. l is the maximum number of message blocks for each
VIL query. c is the size of the chaining variables. SF makes at most qF queries
and runs in time O(qF

2).

In Theorem 5, a simulator is prepared for F instead of f . Let p̂ be a permu-
tation on C × B such that p̂(s, x) = (p(s), x). Since p has no fixed points and
p ◦ p is an identity permutation, so does p̂. Since p̂ ◦ p̂ is an identity permu-
tation, f(s, x) and f(p̂(s, x)) are only used for F (s, x) and F (p̂(s, x)) for every
(s, x) ∈ C × B. Thus, F (s, x) and F (s′, x′) are random and independent of each
other if (s′, x′) 6= p̂(s, x), since f is a random oracle. Moreover, since p̂ has no
fixed points and F (s, x) = f(s, x)‖f(p̂(s, x)), the first half and the second half
of F (s, x) are also random and independent of each other. Thus, as is shown in
Fig. 3, SF can randomly select an output of F for each query.

5.2 MDP with the Davies-Meyer Compression Function

In this section, we consider the case that F is the Davies-Meyer compression
function [18] composed of a block cipher. We show that MDP[F , π] is indifferen-
tiable from a VIL random oracle if the underlying block cipher is ideal.

A block cipher with the block length c and the key length b is called a (c, b)
block cipher. Let E : B × C → C be a (c, b) block cipher. Then, E(K, ·) = EK(·)
is a permutation for every K ∈ B, and D(K, ·) = DK(·) = EK

−1(·). E is called
an ideal cipher if EK is a truly random permutation for every K ∈ B.

15

Initialize:

V ← S ← {IV }

Interface F(s, x):

100: V ← V ∪ {s, p(s)}
101: if F (s, x) = ⊥ then

102: if s ∈ S then

103: t
$

← C \
`

V ∪ π(S) ∪ π−1(V) ∪ p(V) ∪ p(π(S))∪ π−1(p(V)) ∪ Pπ,p

´

104: S ← S ∪ {t}
105: F (s, x)← t

106: F (p(s), x)← swap(t)
107: else if p(s) ∈ S then

108: t
$

← C \
`

V ∪ π(S) ∪ π−1(V) ∪ p(V) ∪ p(π(S))∪ π−1(p(V)) ∪ Pπ,p

´

109: S ← S ∪ {t}
110: F (p(s), x)← t

111: F (s, x)← swap(t)
112: else if π−1(s) ∈ S then

113: F (s, x)←H(M‖x), where F ∗(IV , M) = π−1(s)
114: F (p(s), x)← swap(F (s, x))
115: else if π−1(p(s)) ∈ S then

116: F (p(s), x)←H(M‖x), where F ∗(IV , M) = π−1(p(s))
117: F (s, x)← swap(F (p(s), x))
118: else

119: F (s, x)
$

← C
120: F (p(s), x)← swap(F (s, x))

121: V ← V ∪ {F (s, x), F (p(s), x)}

122: return F (s, x)

Fig. 3. Pseudocode for the simulator SF . swap(t1‖t2) = t2‖t1 for every t1, t2 ∈
{0, 1}c/2.

Theorem 6. Let F : C × B → C be the Davies-Meyer compression function
with an ideal (c, b) block cipher E, that is, F (s, x) = Ex(s) ⊕ s. Let A be an
adversary that asks at most qV queries to the VIL oracle, qF0

queries to the
FIL encryption oracle and qF1

queries to the FIL decryption oracle. Let l be the
maximum number of message blocks for each VIL query. Suppose that lqV +
qF0

+ qF1
≤ 2c−1. Then,

Advdiff
MDP[F ,π],SE,SD

(A) ≤
13(lqV + qF0

+ qF1
)(2lqV + qF0

+ qF1
) + |Pπ |(3lqV + qF0

)

2c+1
,

where the simulators SE and SD are given in Fig. 4. SE is a simulator for
the encryption oracle, and SD for the decryption oracle. SE makes at most qF0

queries and runs in time O(qF0
(qF0

+ qF1
)). SD makes at most qF0

· qF1
queries

and runs in time O(qF1
(qF0

+ qF1
)).

16

Initialize:

V ← S ← {IV }
P(x)← Q(x)← C

Interface E(x, s):

100: V ← V ∪ {s}
101: if Ex(s) = ⊥ then

102: if s ∈ S then

103: Ex(s)
$

← Q(x) \ Sbad

104: S ← S ∪ {Ex(s)⊕ s}
105: else if π−1(s) ∈ S then

106: u ← H(M‖x) ⊕ s, where
F ∗(IV , M) = π−1(s)

107: if u 6∈ Q(x) then

108: return fail

109: else

110: Ex(s)← u

111: else

112: Ex(s)
$

← Q(x)

113: V ← V ∪ {Ex(s)⊕ s}
114: P(x)← P(x) \ {s}
115: Q(x)← Q(x) \ {Ex(s)}

116: return Ex(s)

Interface D(x, u):

200: if Dx(u) = ⊥ then

201: for every s ∈ S do

202: if u⊕H(M‖x) = π(s) then

203: N ← N ∪ {s}, where
F ∗(IV , M) = s

204: if |N| ≥ 2 then

205: return fail

206: else if |N| = 1 then

207: if π(s) 6∈ P(x) then

208: return fail

209: else

210: Dx(u)← π(s)

211: else

212: Dx(u)
$

← P(x) \ (S ∪ π(S))

213: V ← V ∪ {Dx(u), Dx(u)⊕ u}
214: P(x)← P(x) \ {Dx(u)}
215: Q(x)← Q(x) \ {u}

216: return Dx(u)

Fig. 4. Pseudocode for the simulator SE and SD. Sbad = {u⊕s |u ∈ V∪π(S)∪π−1(V)∪
Pπ}.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments.
The first author was supported in part by International Communications Foun-
dation (ICF).

References

1. J.H. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Message au-
thentication under weakened assumptions. Advances in Cryptology - CRYPTO’99,
LNCS 1666, pp. 252–269, 1999.

2. M. Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. Advances in Cryptology - CRYPTO 2006, LNCS 4117, pp. 602–619,
2006.

3. M. Bellare, R. Canetti and H. Krawczyk. Keying hash functions for message au-
thentication. Advances in Cryptology - CRYPTO’96, LNCS 1109, pp. 1–15, 1996.

4. M. Bellare, R. Canetti and H. Krawczyk. Pseudorandom functions revisited: The
cascade construction and its concrete security, Proc. of FOCS’96, pp. 514–523,
1996.

17

5. M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. Advances in Cryptology - EUROCRYPT
2003, LNCS 2656, pp. 491–506, 2003.

6. M. Bellare and T. Ristenpart. Multi-property-preserving hash domain extension
and the EMD transform. Advances in Cryptology - ASIACRYPT 2006, LNCS 4284,
pp. 299–314, 2006.

7. M. Bellare and T. Ristenpart. Hash functions in the dedicated-key setting: Design
choices and MPP transforms. Automata, Languages and Programming - ICALP
2007, LNCS 4596, pp. 399–410, 2007.

8. B. den Boer and A. Mosselaers. Collisions for the compression function of MD5.
Advances in Cryptology - EUROCRYPT’93, LNCS 765, pp. 293–304, 1994.

9. D. Chang, S. Lee, M. Nandi and M. Yung. Indifferentiable security analysis of pop-
ular hash function with prefix-free padding. Advances in Cryptology - ASIACRYPT
2006, LNCS 4284, pp. 283–298, 2006.

10. S. Contini and Y.L. Yin. Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. Advances in Cryptology - ASIACRYPT 2006, LNCS
4284, pp. 37–53, 2006.

11. J.-S. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damg̊ard revisited: How
to construct a hash function. Advances in Cryptology - CRYPTO 2005, LNCS 3621,
pp. 430–448, 2005.

12. I. Damg̊ard. A design principle for hash functions. Advances in Cryptology -
CRYPTO’89, LNCS 435, pp. 416–427, 1989.

13. S. Hirose, J.H. Park and A. Yun. A simple variant of the Merkle-Damg̊ard scheme
with a permutation. Full version of this paper.

14. J. Kelsey, in Public Comments on the Draft Federal Information Processing Stan-
dard (FIPS) Draft FIPS 180-2, Secure Hash Standard (SHS), http://csrc.nist.
gov/CryptoToolkit/shs/dfips-180-2-comments1.pdf, 2001.

15. J. Kim, A. Biryukov, B. Preneel and S. Lee. On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. SCN 2006. Also available at
http://eprint.iacr.org/2006/187.

16. U. M. Maurer, R. Renner and C. Holenstein. Indifferentiability, impossibility re-
sults on reductions, and applications to the random oracle methodology. Theory
of Cryptography - TCC 2004, LNCS 2951, pp. 21–39, 2004.

17. U. Maurer and J. Sjödin. Single-key AIL-MACs from any FIL-MAC. Automata,
Languages and Programming - ICALP 2005, LNCS 3580, pp. 472–484, 2005.

18. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

19. R. Merkle. One way hash functions and DES. Advances in Cryptology, -
CRYPTO’89, LNCS 435, pp. 428–446, 1989.

20. M. Nandi. Towards optimal double-length hash functions. Progress in Cryptology
- INDOCRYPT 2005, LNCS 3797, pp. 77–89, 2005.

21. B. Preneel, R. Govaerts and J. Vandewalle. Hash functions based on block ciphers:
A synthetic approach. Advances in Cryptology - CRYPTO’93, LNCS 773, pp. 368–
378, 1994.

22. G. Tsudik. Message authentication with one-way hash functions. ACM Computer
Communications Review, vol. 22(5): 29–38 (1992).

