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Abstract. This paper presents a secure constant-round password-based
group key exchange protocol in the common reference string model. Our
protocol is based on the group key exchange protocol by Burmester and
Desmedt and on the 2-party password-based authenticated protocols by
Gennaro and Lindell, and by Katz, Ostrovsky, and Yung. The proof of
security is in the standard model and based on the notion of smooth pro-
jective hash functions. As a result, it can be instantiated under various
computational assumptions, such as decisional Diffie-Hellman, quadratic
residuosity, and N -residuosity.
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1 Introduction

Key exchange is one of the most useful tools in public-key cryptography, allow-
ing users to establish a common secret which they can then use in applications
to achieve both privacy and authenticity. Among the examples of key exchange
protocols, the most classical one is the Diffie-Hellman protocol [22]. Unfortu-
nately, the latter only works between two players and does not provide any
authentication of the players.

Group Key Exchange. Group key exchange protocols are designed to provide
a pool of players communicating over an open network with a shared secret key
which may later be used to achieve cryptographic goals like multicast message
confidentiality or multicast data integrity. Secure virtual conferences involving
up to one hundred participants is an example.

Due to the usefulness of group key exchange protocols, several papers have
attempted to extend the basic Diffie-Hellman protocol to the group setting.
Nonetheless, most of these attempts were rather informal or quite inefficient in
practice for large groups. To make the analyses of such protocols more formal,
Bresson et al. [11, 16] introduced a formal security model for group key exchange
protocols, in the same vein as [6, 7, 4]. Moreover, they also proposed new pro-
tocols, referred to as group Diffie-Hellman protocols, using a ring structure for
the communication, in which each player has to wait for the message from his
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predecessor before producing his own. Unfortunately, the nature of their com-
munication structure makes their protocols quite impractical for large groups
since the number of rounds of communication is linear in the number of players.

A more efficient and practical approach to the group key exchange problem
is the one proposed by Burmester and Desmedt [17, 18], in which they provide
a constant-round Diffie-Hellman variant. Their protocol is both scalable and
efficient, even for large groups, since it only requires 2 rounds of broadcasts.
Thus, with reasonable time-out values, one could always quickly decide whether
or not a protocol has been successfully executed. Furthermore, their protocol
has also been formally analyzed, in the above security framework [30].

Password-Based Authenticated Key Exchange. The most classical way
to add authentication to key exchange protocols is to sign critical message flows.
In fact, as shown by Katz and Yung [30] in the context of group key exchange
protocols, this technique can be made quite general and efficient, converting
any scheme that is secure against passive adversaries into one that is secure
against active ones. Unfortunately, such techniques require the use of complex
infrastructures to handle public keys and certificates. One way to avoid such
infrastructures is to use passwords for authentication. In the latter case, the
pool of players who wants to agree on a common secret key only needs to share
a low-entropy password —a 4-digit pin-code, for example— against which an
exhaustive search is quite easy to perform. In password-based protocols, it is
clear that an outsider attacker can always guess a password and attempt to run
the protocol. In case of failure, he can try again with a different guess. After
each failure, the adversary can erase one password. Such an attack, known as
“on-line exhaustive search” cannot be avoided, but the damage it may cause
can be mitigated by other means such as limiting the number of failed login
attempts. A more dangerous threat is the “off-line exhaustive search”, also known
as “dictionary attack”. It would mean that after one failure, or even after a simple
eavesdropping, the adversary can significantly reduce the number of password
candidates.

In the two-party case, perhaps the most well known Diffie-Hellman variant
is the encrypted key exchange protocol by Bellovin and Merritt [8]. However, its
security analyses [4, 10, 13, 14] require ideal models, such as the random oracle
model [5] or the ideal cipher model. The first practical password-based key ex-
change protocol, without random oracles, was proposed by Katz et al. [28] in
the common reference string model and it is based on the Cramer-Shoup cryp-
tosystem [19]. Their work was later extended by Gennaro and Lindell [24] using
the more general smooth projective hash function primitive [19–21].

In the group key exchange case, very few protocols have been proposed with
password authentication. In [12, 15], Bresson et al. showed how to adapt their
group Diffie-Hellman protocols to the password-based scenario. However, as the
original protocols on which they are based, their security analyses require ideal
models and the total number of rounds is linear in the number of players, making
their schemes impractical for large groups. More recently, several constant-round
password-based group key exchange protocols have been proposed in the liter-
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ature by Abdalla et al. [1], by Dutta and Barua [23], and by Kim, Lee, and
Lee [31]. All of these constructions are based on the Burmester and Desmedt
protocol [17, 18] and are quite efficient, but their security analyses usually re-
quire the random oracle and/or the ideal cipher models.1 Independently of and
concurrently to our work, a new constant-round password-based group key ex-
change protocol has been proposed by Bohli et al. [9]. Their protocol is more
efficient than ours and also enjoys a security proof in the standard model.

Contributions. In this paper, we propose the first password-based authenti-
cated group key exchange protocol in the standard model. To achieve this goal,
we extend the Gennaro-Lindell framework [24] to the group setting, using ideas
similar to those used in the Burmester-Desmedt protocol [17, 18]. In doing so,
we take advantage of the smooth projective hash function primitive [20] to avoid
the use of ideal models. Our protocol has several advantages. First, it is efficient
both in terms of communication, only requiring 5 rounds, and in terms of compu-
tation, with a per-user computational load that is linear in the size of the group.
Second, like the Burmester-Desmedt protocol, our protocol is also contributory
since each member contributes equally to the generation of the common session
key. Such property, as pointed out by Steiner, Tsudik and Waidner [33], may be
essential for certain distributed applications. Finally, as in the Gennaro-Lindell
framework [24], our protocol works in the common reference string model and
is quite general, being built in a modular way from four cryptographic primi-
tives: a labeled encryption scheme secure against chosen-ciphertext attacks, a
signature scheme, a family of smooth projective hash functions, and a family of
universal hash functions. Thus, it can be instantiated under various computa-
tional assumptions, such as decisional Diffie-Hellman, quadratic residuosity, and
N -residuosity (see [24]). In particular, the Diffie-Hellman variant (based on the
Cramer-Shoup cryptosystem [19]) can be seen as a generalization of the KOY
protocol [28] to the group setting.

2 Security Model

The security model for password-based group key exchange protocols that we
present here is the one by Bresson et al. [15], which is based on the model by
Bellare et al. [4] for 2-party password-based key exchange protocols.

Protocol participants. Let U denote the set of potential participants in a
password-based group key exchange protocol. Each participant U ∈ U may be-
long to several subgroups G ⊆ U , each of which has a unique password pwG
associated to it. The password pwG of a subgroup G is known to all the users
Ui ∈ G.
1 In fact, in [1], Abdalla et al. showed that the protocols by Dutta and Barua [23]

and by Kim, Lee, and Lee are insecure by presenting concrete attacks against these
schemes.
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Protocol execution. The interaction between an adversary A and the protocol
participants only occurs via oracle queries, which model the adversary capabil-
ities in a real attack. During the execution of the protocol, the adversary may
create several instances of a participant and several instances of the same par-
ticipant may be active at any given time. Let U 〈i〉 denote the instance i of a
participant U and let b be a bit chosen uniformly at random. The query types
available to the adversary are as follows:

• Execute(U
〈i1〉
1 , . . . , U

〈in〉
n ): This query models passive attacks in which the

attacker eavesdrops on honest executions among the participant instances

U
〈i1〉
1 , . . . , U

〈in〉
n . It returns the messages that were exchanged during an

honest execution of the protocol.

• Send(U 〈i〉,m): This query models an active attack, in which the adversary
may tamper with the message being sent over the public channel. It returns
the message that the participant instance U 〈i〉 would generate upon receipt
of message m.

• Reveal(U 〈i〉): This query models the misuse of session keys by a user. It
returns the session key held by the instance U 〈i〉.

• Test(U 〈i〉): This query tries to capture the adversary’s ability to tell apart
a real session key from a random one. It returns the session key for instance
U 〈i〉 if b = 1 or a random key of the same size if b = 0.

Partnering. Following [30], we define the notion of partnering via session and
partner identifiers. Let the session identifier sidi of a participant instance U 〈i〉 be
a function of all the messages sent and received by U 〈i〉 as specified by the group
key exchange protocol. Let the partner identifier pidi of a participant instance
U 〈i〉 is the set of all participants with whom U 〈i〉 wishes to establish a common

secret key. Two instances U
〈i1〉
1 and U

〈i2〉
2 are said to be partnered if and only if

pidi1
1 = pidi2

2 and sidi1
1 = sidi2

2 .

Freshness. Differently from [30], our definition of freshness does not take into
account forward security as the latter is out of the scope of the present paper.
Let acci be true if an instance U 〈i〉 goes into an accept state after receiving the
last expected protocol message and false otherwise. We say that an instance U 〈i〉

is fresh if acci = true and no Reveal has been asked to U 〈i〉 or to any of its
partners.

Correctness. For a protocol to be correct, it should always be the case that,

whenever two instances U
〈i1〉
1 and U

〈i2〉
2 are partnered and have accepted, both

instances should hold the same non-null session key.

Indistinguishability. Consider an execution of the group key exchange pro-
tocol P by an adversary A, in which the latter is given access to the Reveal,
Execute, Send, and Test oracles and asks a single Test query to a fresh in-
stance, and outputs a guess bit b′. Let Succ denote the event b′ correctly
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matches the value of the hidden bit b used by the Test oracle. The AKE-IND
advantage of an adversary A in violating the indistinguishability of the protocol
P and the advantage function of the protocol P , when passwords are drawn
from a dictionary D, are respectively Advake-ind

P,D (A) = 2 · Pr [Succ ] − 1 and

Advake-ind
P,D (t, R) = maxA{Advake-ind

P,D (A)} , where maximum is over all A with
time-complexity at most t and using resources at most R (such as the number
of queries to its oracles). The definition of time-complexity that we use hence-
forth is the usual one, which includes the maximum of all execution times in the
experiments defining the security plus the code size.

We say that a password-based group key exchange protocol P is secure if
the advantage of any polynomial-time adversary is only negligibly larger than
O(q/|D|), where q is number of different protocol instances to which the adver-
sary has asked Send queries. Given that the dictionary size can be quite small
in practice, the hidden constant in the big-O notation should be as small as
possible (preferably 1) for a higher level of security.

3 Building blocks

3.1 Universal Hash Function Families

One of the tools used in our protocol is a family of universal hash functions. A
family UH of universal hash function is a map K×G 7→ R, where K is the key
or seed space, G is the domain of the hash function, and R is the range. For
each seed or key k ∈ K, we can define a particular instance UHk : G 7→ R of
the family by fixing the key being used in the computation of the function. For
simplicity, we sometimes omit the seed k from the notation when referring to a
particular instance of the family. Let UHk be a universal hash function chosen
at random from a family UH . One of the properties of universal hash function
families in which we are interested is the one that says that, if an element g is
chosen uniformly at random from G, then the output distribution of UHk (g) is
statistically close to uniform in R [26].

3.2 Signatures

The signature scheme used in our protocol is the standard one introduced by
Goldwasser, Micali, and Rivest [25]. A standard signature scheme SIG = (SKG,
Sign,Ver) is composed of three algorithms. The key generation algorithm SKG

takes as input 1k, where k is a security parameter, and returns a pair (sk , vk)
containing the secret signing key and the public verification key. The signing
algorithm Sign takes as input the secret key sk and a message m and returns a
signature σ for that message. The verification algorithm Ver on input (vk ,m, σ)
returns 1 if σ is a valid signature for the message m with respect to the verifi-
cation key vk .

The security notion for signature schemes needed in our proofs is strong
existential unforgeability under chosen-message attacks [25]. More precisely, let
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(sk , vk) be a pair of secret and public keys for a signature scheme SIG , let
Sign(·) be a signing oracle which returns σ = Sign(sk ,m) on input m, and
let F be an adversary. Then, consider the experiment in which the adversary
F , who is given access to the public key vk and to the signing oracle Sign(·),
outputs a pair (m, σ). Let {(mi, σi)} denote the set of queries made to the
signing oracle with the respective responses and let Succ denote the event in
which Ver(vk ,m ′, σ′) = 1 and that (m ′, σ′) 6∈ {(mi, σi)}. The SIG-SUF-CMA-

advantage of an adversary F in violating the chosen message security of the
signature scheme SIG is defined as Adv

sig-suf-cma
SIG ,F (k) = Pr [Succ ]. A signature

scheme SIG is said to be SIG-SUF-CMA-secure if this advantage is a negligible
function in k for all polynomial time adversaries (PTAs) F asking a polynomial
number of queries to their signing oracle.

3.3 Labeled Encryption

The notion of labeled encryption, first formalized in the ISO 18033-2 stan-
dard [32], is a variation of the usual encryption notion that takes into account the
presence of labels in the encryption and decryption algorithms. More precisely,
in a labeled encryption scheme, both the encryption and decryption algorithms
have an additional input parameter, referred to as a label, and the decryption
algorithm should only correctly decrypt a ciphertext if its input label matches
the label used to create that ciphertext.

Formally, a labeled encryption scheme LPKE = (LKG,Enc,Dec) consists of

three algorithms. Via (pk , sk)
$
← LKG(1k), where k ∈ N is a security parameter,

the randomized key-generation algorithm produces the public and secret keys

of the scheme. Via c
$
← Enc(pk , l ,m; r), the randomized encryption algorithm

produces a ciphertext c for a label l and message m using r as the randomness.
Via m ← Dec(sk , l , c), the decryption algorithm decrypts the ciphertext c using
l as the label to get back a message m.

The security notion for labeled encryption is similar to that of standard en-
cryption schemes. The main difference is that, whenever the adversary wishes
to ask a query to his Left-or-Right encryption oracle, in addition to providing
a pair of messages (m0,m1), he also has to provide a target label l in order
to obtain the challenge ciphertext c. Moreover, when chosen-ciphertext security
(LPKE-IND-CCA) is concerned, the adversary is also allowed to query his de-
cryption oracle on any pair (l , c) as long as the ciphertext c does not match the
output of a query to his Left-or-Right encryption oracle whose input includes the
label l . As shown by Bellare et al. in the case of standard encryption schemes [3],
one can easily show that the Left-or-Right security notion for labeled encryption
follows from the more standard Find-Then-Guess security notion (in which the
adversary is only allowed a single query to his challenging encryption oracle).

3.4 Smooth Projective Hash Functions

The notion of projective hash function families was first introduced by Cramer
and Shoup [20] as a means to design chosen-ciphertext secure encryption schemes.
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Later, Gennaro and Lindell [24] showed how to use such families to build secure
password-based authenticated key exchange protocols. One of the properties that
makes these functions particularly interesting is that, for certain points of their
domain, their values can be computed by using either a secret hashing key or a
public projective key. While the computation using secret hashing key works for
all the points in the domain of the hash function, the computation using a public
projective key only works for a specified subset of the domain. A projective hash
function family is said to be smooth if the value of the function on inputs that
are outside the particular subset of the domain are independent of the projective
key. In [24], the notion of smooth hash functions was presented in the context of
families of hard (partitioned) subset membership problems. Here we follow the
same approach.

Hard partitioned subset membership problems. Let k ∈ N be a security
parameter. In a family of hard (partitioned) subset membership problem, we first
specify two sets X(k) and L(k) in {0, 1}poly(k) such that L(k) ⊆ X(k) as well as
two distributions D(L(k)) and D(X(k)\L(k)) over L(k) and X(k)\L(k)) respec-
tively. Next, we specify a witness set W(k) ⊆ {0, 1}poly(k) and a NP-relation
R(k) ⊆ X(k) ×W(k) such that x ∈ L(k) if and only if there exists a witness
w ∈W(k) such that (x ,w) ∈ R(k). Then, we say that a family of subset mem-
bership problems is hard if (X(k),L(k),D(L(k)),D(X(k) \ L(k)),W(k),R(k))
instances can be efficiently generated, that a member element x ∈ L(k) can be
efficiently sampled according to D(L(k)) along with a witness w ∈ W(k) to
the fact that (x ,w) ∈ R(k), that non-member elements x ∈ X(k) \ L(k) can
be efficiently sampled according to D(X(k) \ L(k)), and that the distributions
of member and non-member elements cannot be efficiently distinguished. The
definition of hard partitioned subset membership problem is an extension of the
one given above in which the set X(k) is partitioned in disjoint subsets X(k, i)
for some index i and for which for all i it remains hard to distinguish an ele-
ment x ∈ L(k, i) chosen according to a distribution D(L(k, i)) from an element
x ∈ X(k, i) \ L(k, i) chosen according to a distribution D(X(k, i) \ L(k, i)).

Hard partitioned subset membership problems from labeled encryp-

tion. The families of hard partitioned subset membership problems in which
we are interested are those based on LPKE-IND-CCA-secure labeled encryption
schemes. More precisely, let LPKE = (LKG,Enc,Dec) be a LPKE-IND-CCA-
secure labeled encryption scheme and let pk be a public key outputted by the
LKG algorithm for a given security parameter k. Let Enc(pk) denote an efficiently
recognizable superset of the space of all ciphertexts that may be outputted by
the encryption algorithm Enc when the public key is pk and let L and M de-
note efficiently recognizable supersets of the label and message spaces. Using
these sets, we can define a family of hard partitioned subset membership prob-
lems as follows. First, we define the sets X and L for the family of hard subset
membership problems as X(pk) = Enc(pk) × L ×M and L(pk) = {(c, l ,m) |
∃r s.t. c = Enc(pk , l ,m; r)}. Next, we define the partitioning of the sets X and
L with respect to the message and label used in the encryption as X(pk , l ,m) =
Enc(pk) × l × m and L(pk , l ,m) = {(c, l ,m) | ∃r s.t. c = Enc(pk , l ,m; r)}. The
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distribution D(L(pk , l ,m)) can then be defined by choosing a random r ∈ R

and outputting the triple (Enc(pk , l ,m; r), l ,m) with r as a witness. Likewise,
the distribution D(X(pk , l ,m)\L(pk , l ,m)) can be defined by choosing a random
r ∈ R and outputting the triple (Enc(pk , l ,m ′; r), l ,m), where m ′ is a dummy
message different from m but of the same length. Finally, we define the witness
set W(pk) to be r and the NP-relation R(pk) in a natural way. It is easy to
see that the hardness of distinguishing non-members from members follows from
the LPKE-IND-CCA security of the labeled encryption scheme.

Smooth projective hash functions. Let HLPKE (pk) = (X(pk),L(pk),
D(X(pk , l ,m) \ L(pk , l ,m)),D(L(pk , l ,m)),W(pk),R(pk)) be a family of hard
(partitioned) subset membership problems based on a LPKE-IND-CCA-secure
labeled encryption scheme LPKE with security parameter k. A family of smooth
projective hash functions HASH (pk) = (HashKG,ProjKG,Hash,ProjHash) asso-

ciated with HLPKE consists of four algorithms. Via hk
$
← HashKG(pk), the

randomized key-generation algorithm produces hash keys hk ∈ HK(pk), where
k ∈ N is a security parameter and pk is the public key of a labeled encryption

scheme LPKE . Via phk
$
← ProjKG(hk , l , c), the randomized key projection al-

gorithm produces projected hash keys phk ∈ PHK(pk) for a hash key hk with
respect to label l and ciphertext c. Via g ← Hash(hk , c, l ,m), the hashing al-
gorithm computes the hash value g ∈ G(pk) of (c, l ,m) using the hash key hk .
Via g ← ProjHash(phk , c, l ,m; r), the projected hashing algorithm computes the
hash value g ∈ G(pk) of (c, l ,m) using the projected hash key phk and a wit-
ness r to the fact that c is a valid encryption of message m with respect to the
public-key pk and label l .

Properties. The properties of smooth projective hash functions in which we
are interested are correctness, smoothness, and pseudorandomness.

Correctness. Let LPKE be a labeled encryption scheme and let pk be a public
key outputted by the LKG algorithm for a given security parameter k. Let c =
Enc(pk , l ,m; r) be the ciphertext for a message m with respect to public key pk

and label l computed using r as the randomness. Then, for any hash key hk ∈

HK(pk) and projected hash key phk
$
← ProjKG(hk , l , c), the values Hash(hk , c,

l ,m) and ProjHash(phk , c, l ,m, r) are the same.

Smoothness. Let hk ∈ HK(pk) be a hash key and let phk ∈ PHK(pk) be a
projected hash key for hk with respect to l and c. Then, for every triple (c, l ,m)
for which c is not a valid encryption of message m with respect to the public-
key pk and label l (i.e., (c, l ,m) ∈ X(pk , l ,m) \ L(pk , l ,m)), the hash value g

= Hash(hk , c, l ,m) is statistically close to uniform in G and independent of the
values (phk , c, l ,m).

Pseudorandomness. Let LPKE be a LPKE-IND-CCA-secure labeled encryp-
tion scheme, let pk be a public key outputted by the LKG algorithm for a given
security parameter k, and let (l ,m) ∈ L ×M be a message-label pair. Then,
for uniformly chosen hash key hk ∈ HK(pk) and randomness r ∈ R(pk), the
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distributions {c = Enc(pk , l ,m; r), l ,m, phk
$
← ProjKG(hk , l , c), g ← Hash(hk , c,

l ,m)} and {c = Enc(pk , l ,m; r), l ,m, phk
$
← ProjKG(hk , l , c), g

$
← G} are com-

putationally indistinguishable.

Examples. To provide the reader with an idea of how efficient smooth projective
hash functions are, we recall here the example given in [24] based on the Cramer-
Shoup encryption scheme [19].

The labeled version of the Cramer-Shoup scheme works as follows. Let G be
a cyclic group of prime order q where q is large. The key generation algorithm
chooses two additional random generators g1, g2 in G, a collision-resistant hash
function H, and random values z, z̃1, z̃2, ẑ1, ẑ2 in Zq with z 6= 0. The secret key

is set to (z, z̃1, z̃2, ẑ1, ẑ2) and the public key is defined to be (h, h̃, ĥ, g1, g2,H),

where h = gz
1 , h̃ = gz̃1

1 gz̃2

2 , and ĥ = gẑ1

1 gẑ2

2 . To encrypt a message m ∈ G with
respect to label l, the sender chooses r ∈ Zq , and computes u1 = gr

1 , u2 = gr
2 ,

e = hr ·m, θ = H(l, u1, u2, e) and v = (h̃ĥθ)r. The ciphertext is c = (u1, u2, e, v).
To decrypt a ciphertext c = (u1, u2, e, v) with respect to label l, the receiver
computes θ = H(l, u1, u2, e) and tests if v equals uz̃1+θẑ1

1 uz̃2+θẑ2

2 . If equality does
not hold, it outputs ⊥; otherwise, it outputs m = eu−z

1 .

The smooth projective hashing for the labeled Cramer-Shoup encryption
scheme is then defined as follows. The hash key generation algorithm HashKG

simply sets the key hk to be the tuple (a1, a2, a3, a4) where each ai is a ran-
dom value in Zq. The key projection function ProjKG, on input (hk , l , c), first

computes θ = H(l, u1, u2, e) and outputs phk = ga1

1 ga2

2 ha3(h̃ĥθ)a4 . The hash
function Hash on input (hk , c, l ,m) outputs ua1

1 ua2

2 (e/m)a3va4 . The projective
hash function ProjHash on input (phk , c, l ,m, r) simply outputs phkr.

4 A scalable password-based group key exchange protocol

In this section, we finally present our password-based group key exchange proto-
col. Our protocol is an extension of the Gennaro-Lindell password-based key
exchange protocol [24] to the group setting and uses ideas similar to those
used in the Burmester-Desmedt group key exchange protocol [18]. The Gennaro-
Lindell protocol itself is an abstraction of the password-based key exchange pro-
tocol of Katz, Ostrovsky, and Yung [28, 29]. Like the Gennaro-Lindell protocol,
our protocol is built in a modular way from four cryptographic primitives: a
LPKE-IND-CCA-secure labeled encryption scheme, a signature scheme, a fam-
ily of smooth projective hash functions, and a family of universal hash functions.
Thus, our protocol enjoys efficient instantiations based on the decisional Diffie-
Hellman, quadratic residuosity, and N -residuosity assumptions (see [24]). Like
the Burmester-Desmedt group key exchange protocol, our protocol only requires
a constant number of rounds and low per-user computation.

As done in the Gennaro-Lindell protocol, we also assume the existence of
a mechanism to allow parties involved in the protocol to differentiate between
concurrent executions as well as identify the other parties with which they are
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interacting. As in their case, this requirement is only needed for the correct
operation of the protocol. No security requirement is imposed on this mechanism.

4.1 Protocol Description

Overview. As in the Burmester-Desmedt protocol, our protocol assumes a ring
structure for the users so that we can refer to the predecessor and successor
of a user. Moreover, we associate each user with an index i between 1 and n,
where n is the size of the group. After deciding on the order of the users, our
protocol works as follows. First, each user in the group executes two correlated
instances of the Gennaro-Lindell protocol, one with his predecessor and one with
his successor so each user can authenticate his neighbors (this accounts for the
first 3 rounds of the protocol). However, instead of generating a single session
key in each of these instances, we modify the original Gennaro-Lindell protocol
so that two independent session keys are generated in each session (this requires
an extra hash key and an extra projection key per user). We then use the first
one of these as a test key to authenticate the neighbor with whom that key is
shared and we use the other one to help in the computation of the group session
key, which is defined as the product of these latter keys. To do so, we add one
more round of communication like in the Burmester-Desmedt protocol, so that
each user computes and broadcasts the ratio of the session keys that he shares
with his predecessor and successor. After this round, each user is capable of
computing the group session key. However, to ensure that all users agree on the
same key, a final round of signatures is added to the protocol to make sure that
all users compute the group session key based on the same transcript. The key
used to verify the signature of a user is the same one transmitted by that user
in the first round of the Gennaro-Lindell protocol.

For a pictorial description of our protocol, please refer to Fig. 1. The formal
description follows.

Description. Let LPKE = (LKG,Enc,Dec) be a labeled encryption scheme, let
SIG = (SKG,Sign,Ver) be a signature scheme, and let HASH (pk) = (HashKG,
ProjKG,Hash,ProjHash) be a family smooth projective hash functions based on
LPKE . Let UH : G 7→ {0, 1}2l and UH′ : G 7→ {0, 1}l be two universal hash
functions chosen uniformly at random from the families UH and UH ′ and let
UH1(g) and UH2(g) refer to the first and second halves of UH(g). Let U1, . . . , Un

be the users wishing to establish a common secret key and let pw be their joint
password chosen uniformly at random from a dictionary Dict of size N . We
assume pw either lies in the message space M of LPKE or can be easily mapped
to it. Our protocol has a total of five rounds of communication and works as
follows.

Initialization. A trusted server runs the key generation algorithm LKG on
input 1k, where k ∈ N is a security parameter, to obtain a pair (pk , sk) of secret
and public keys and publishes the public key pk along with randomly selected
universal hash function UH and UH′ from the families UH and UH ′.
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Round 1. In this first round, each player Ui for i = 1, . . . , n starts by setting
the partner identifier pidi to {U1, . . . , Un}. Then, each player Ui generates a pair
(sk i, vk i) of secret and public keys for a signature scheme and a label li = vk i ‖
U1 ‖ . . . ‖Un. Next, each player encrypts the joint group password pw using the
encryption algorithm Enc with respect to the public key pk and label li using rRi
as the randomness. Let cRi denote the resulting ciphertext (i.e., cRi = Enc(pk , li,
pw; rRi )). At the end of this round, each player Ui broadcasts the pair (li, c

R

i ).

Round 2. In this second round, each player Ui for i = 1, . . . , n encrypts once
more the joint group password pw using the encryption algorithm Enc with
respect to the public key pk and label li using rLi as the randomness. Let cLi
denote the resulting ciphertext (i.e., cLi = Enc(pk , li, pw; rLi )). Next, each player
Ui chooses a hash key hkL

i uniformly at random from HK(pk) for the smooth
projective hash function and then generates a projection key phkL

i for it with

respect to the pair (cRi−1, li−1). That is, phkL

i
$
← ProjKG(hkL

i , li−1, c
R

i−1). Here and
in other parts of the protocol, the indices are taken modulo n. At the end of this
round, each player Ui broadcasts the pair (cLi , phkL

i ).

Round 3. In this round, player Ui first chooses two new hash keys hk i and
hkR

i uniformly at random from HK(pk) for the smooth projective hash function.
Next, player Ui generates two projection keys phk i and phkR

i for the hash keys hk i

and hkR

i , both with respect to the pair (cLi+1, li+1). That is, phk i
$
← ProjKG(hk i,

li+1, c
L

i+1) and phkR

i
$
← ProjKG(hkR

i , li+1, c
L

i+1). Then, player Ui computes a test

master key X R

i = K L

i+1 · K
R

i for its successor, where K L

i , Hash(hkL

i , c
R

i−1, li−1,

pw) and K R

i , Hash(hkR

i , c
L

i+1, li+1, pw). Note that player Ui can compute K R

i

using hkR

i and K L

i+1 using phkL

i+1 and the witness rRi to the fact that cRi is a
valid encryption of pw with respect to pk and li. Finally, player Ui computes a
test key testRi = UH1(X

R

i ), sets T R

i = Ui ‖Ui+1 ‖ c
R

i ‖ c
L

i+1 ‖ phk i ‖ phk
R

i ‖ phk
L

i+1 ‖
testRi , and computes a signature σR

i on T R

i using sk i. At the end of this round,
player Ui broadcasts the tuple (phk i, phk

R

i , test
R

i , σ
R

i ).

Round 4. In this round, each player Ui first verifies if the signature σR

i−1 on
the transcript T R

i−1 is correct using vk i−1. If this check fails, then player Ui halts
and sets acci = false. Otherwise, player Ui computes the values K L

i and K R

i−1,

using the hash key hkL

i and the projection key phkR

i−1 along with the witness rLi
to the fact that cLi is a valid encryption of pw with respect to pk and li. That is,
K L

i = Hash(hkL

i , c
R

i−1, li−1, pw) and K R

i−1 = ProjHash(phkR

i−1, c
L

i , li, pw, rLi ). Next,
player Ui computes the test master key X L

i = K L

i ·K
R

i−1 for its predecessor and
verifies if testRi−1 = UH1(X

L

i ). Once again, if this test fails, then player Ui halts
and sets acci = false. If this test succeeds, then player Ui computes a test key
testLi = UH2(X

L

i ) for its predecessor and an auxiliary key Xi = Ki/Ki−1, where
Ki , Hash(hk i, c

L

i+1, li+1, pw). More precisely, player Ui computes the value Ki

using the hash key hk i and the value Ki−1 using the projection key phk i−1 along
with the witness rLi to the fact that cLi is a valid encryption of pw with respect
to pk and li. Finally, each player Ui broadcasts the pair (Xi, test

L

i ).
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Round 5. First, each player Ui checks whether testLi+1 = UH2(X
R

i ) and whether∏n
l=1 Xl = 1. If any of these tests fails, then player Ui halts and sets acci = false.

Otherwise, each player Ui sets Tj = vk j ‖Uj ‖ cj ‖ phk j ‖ phk
L

j ‖ phk
R

j ‖Xj ‖X
L

j

for j = 1, . . . , n and T = T1 ‖ . . . ‖Tn and then signs it using sk i to obtain σi.
Finally, each player Ui broadcasts σi.

Finalization. Each player Ui checks for j 6= i whether σj is a valid signature
on T with respect to vk j . If any of these checks fails, then player Ui halts and
sets acci = false. Otherwise, player Ui sets acci = true and computes the master
key MSK =

∏n
j=1 Kj = Kn

i ·X
n−1
i+1 ·X

n−2
i+2 · . . . ·X

2
i+n−3 ·Xi+n−1, and the session

key SK = UH′(MSK ). Each player Ui also sets the session identifier sidi to T .

Observation. Let Ki , Hash(hk i, c
L

i+1, li+1, pw), K R

i , Hash(hkR

i , c
L

i+1, li+1,

pw), and K L

i , Hash(hkL

i , c
R

i−1, li−1, pw) denote temporary keys. In a normal
execution of the protocol, the temporary keys Ki and K R

i are known to both
player Ui (who knows hk i and hkR

i ) and his successor Ui+1 (who knows phk i,
phkR

i , and the witness rLi+1 to the fact that cLi+1 is a valid encryption of pw with
respect to pk and li+1). Likewise, the temporary key K L

i is known to both player
Ui (who knows hkL

i ) and his predecessor Ui−1 (who knows phkR

i and the witness
rRi−1 to the fact that cRi−1 is a valid encryption of pw with respect to pk and li−1).

4.2 Correctness and Security

Correctness. In an honest execution of the protocol, it is easy to verify that
all participants in the protocol will terminate by accepting and computing the
same values for the partner identifier, session identifiers, and the session key. The
session key in this case is equal to

∏n
j=1 Hash(hk j , cj+1, lj+1, pw) =

∏n
j=1 Kj .

Security. The intuition behind the security of our protocol is quite simple. Due
to the security properties of the underlying Gennaro-Lindell protocol, each user
is able to authenticate its neighbors and safely share session keys with them.
Due to the properties of the signature scheme, all users in the group are able to
ensure that they had received the same messages and that they will generate the
same group session key. As the following theorem shows, the GPAKE protocol
described above and in Fig. 1 is a secure password-based authenticated group
key exchange protocol as long as the primitives on which the protocol is based
meet the appropriate security notion described in the theorem.

Theorem 1. Let LPKE be a labeled encryption secure against chosen-ciphertext

attacks, let HASH be a family of smooth projective hash functions, let UH and

UH ′ be families of universal hash functions, and let SIG be a signature scheme

that is unforgeable against chosen-message attacks. Let GPAKE denote the pro-

tocol built from these primitives as described above and let A be an adversary

against GPAKE . Then, the advantage function Advake-ind
GPAKE ,A(k) is only negligibly

larger than O(q/N ), where q denotes the maximum number of different protocol

instances to which A has asked Send queries and N is the dictionary size.
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The proof can be found in the full version of this paper [2]. In it, we actually
show that the security of our protocol is only negligibly larger than (qsend-1 +
qsend-2)/N , where qsend-1 and qsend-2 represent the maximum number of Send

queries that the adversary can ask with respect to the first and second round of
communication and N is dictionary size. Even though we believe this security
level is good enough for groups of small to medium sizes, it may not be sufficient
in cases where the number of users in a group is large and the dictionary size is
small. In the latter case, it would be desirable to have a scheme whose security is
only negligibly larger than the number of sessions (and not protocol instances)
over the size of the dictionary. Unfortunately, the latter cannot be achieved by
our protocol as it is possible for an active adversary to test in the same session
a number of passwords that is linear in the total number of users, for instance
by playing the role of every other user.

4.3 Efficiency

Our protocol is quite efficient, only requiring a small amount of computation by
each user. In what concerns encryption and hash computations, each user only
has to perform 2 encryptions, 3 projection key generations, 3 hash computations,
3 projected hash computations, and 5 universal hash computations. The most
expensive part of our protocol, which is linear in the group size, is the number of
signature verifications and the master session key computation. While the latter
computation can be improved by using algorithms for multi-exponentiations, the
former can be improved by using two-time signature schemes.

It is worth mentioning that, as done by Katz et al. [27] in the case of the KOY
protocol [28], one could also improve the efficiency of our protocol by using two
different encryption schemes when computing the ciphertexts cRi and cLi broad-
casted in the first and second rounds. While the computation of the ciphertexts
cRi would require a CCA-secure labeled encryption scheme, the computation of
the ciphertexts cLi would only require a CPA-secure encryption scheme.

4.4 Future Work

One issue not addressed in the current paper is whether our protocol remains
secure in the presence of Corrupt queries, through which the adversary can learn
the values of the long-term secret keys held by a user. This is indeed a significant
limitation of our security model which we expect to address in the full version
of this paper. In fact, we do hope to be able to prove that our protocol achieves
forward security according to the definition given in [30].
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User Ui

pidi = {U1, . . . , Un}

(ski, vki)
$
← SKG(1k)

li = vki ‖U1 ‖ . . . ‖Un

cR

i = Enc(pk , li, pw; rR

i )

li, cR
i−−−−−−−−→

hkL

i

$
← HK(pk)

phkL

i

$
← ProjKG(hkL

i, li−1, cR

i−1)

cL

i = Enc(pk , li, pw; rL

i )

phkL
i
, cL

i−−−−−−−−→

hki, hkR

i

$
← HK(pk)

phki

$
← ProjKG(hki, li+1, cL

i+1)

phkR

i

$
← ProjKG(hkR

i, li+1, cL

i+1)

K L

i+1 = ProjHash(phkL

i+1, cR

i , li, pw, rR

i )

K R

i = Hash(hkR

i, c
L

i+1, li+1, pw)

X R

i = K L

i+1 ·K
R

i

testRi = UH1(X
R

i )
σR

i = Sign(ski, T
R

i )

phki, phkR
i
, testR

i
, σR

i−−−−−−−−−−−−→

if Ver(vki−1, T R

i−1, σR

i−1) = 0 then acci = false

K L

i = Hash(hkL

i, c
R

i−1, li−1, pw)

K R

i−1 = ProjHash(phkR

i−1, cL

i , li, pw, rL

i )

X L

i = K L

i ·K
R

i−1

if testRi−1 6= UH1(X
L

i ) then acci = false

testLi = UH2(X
L

i )
Ki = Hash(hki, c

L

i+1, li+1, pw)

Ki−1 = ProjHash(phki−1, cL

i , li, pw, rL

i )
Xi = Ki/Ki−1

Xi, testL
i−−−−−−−−→

if testLi+1 6= UH2(X
R

i ) then acci = false

if
Qn

l=1 Xl 6= 1 then acci = false
T = T1 ‖ . . . ‖Tn

σi = Sign(ski, T)

σi−−−−−−−−→

for j = 1, . . . , i− 1, i + 1, . . . , n
if Ver(vkj , T , σj) = 0 then acci = false

MSK = Kn
i ·

Qn−1
j=1 X

n−j

i+j

SK = UH′(MSK )
acci = true
sidi = T

Fig. 1. An honest execution of the password-authenticated group key exchange
protocol by player Ui in a group {U1, . . . , Un}, where T R

i = Ui ‖Ui+1 ‖ c
R

i ‖ c
L

i+1 ‖

phk i ‖ phk
R

i ‖ phk
L

i+1 ‖ test
R

i and Ti = vk i ‖Ui ‖ ci ‖ phk i ‖ phk
L

i ‖ phk
R

i ‖Xi ‖X
L

i for
i = 1, . . . , n.
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