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Abstract. Currently, the best and only evidence of the security of the
OAEP encryption scheme is a proof in the contentious random oracle
model. Here we give further arguments in support of the security of
OAEP. We first show that partial instantiations, where one of the two
random oracles used in OAEP is instantiated by a function family, can
be provably secure (still in the random oracle model). For various se-
curity statements about OAEP we specify sufficient conditions for the
instantiating function families that, in some cases, are realizable through
standard cryptographic primitives and, in other cases, may currently not
be known to be achievable but appear moderate and plausible. Further-
more, we give the first non-trivial security result about fully instantiated
OAEP in the standard model, where both oracles are instantiated simul-
taneously. Namely, we show that instantiating both random oracles in
OAEP by modest functions implies non-malleability under chosen plain-
text attacks for random messages. We also discuss the implications, es-
pecially of the full instantiation result, to the usage of OAEP for secure
hybird encryption (as required in SSL/TLS, for example).

1 Introduction

OAEP is one of the most known and widely deployed asymmetric encryption
schemes. It was designed by Bellare and Rogaway [5] as a scheme based on
a trapdoor permutation such as RSA. OAEP is standardized in RSA’s PKCS
#1 v2.1 and is part of the ANSI X9.44, IEEE P1363, ISO 18033-2 and SET
standards. The encryption algorithm of OAEPG,H [F ] takes a public key f , which
is an instance of a trapdoor permutation family F , and a message M , picks r
at random and computes the ciphertext C = f(s||t) for s = G(r)⊕M ||0k1 and
t = H(s)⊕ r, where G and H are some hash functions. Despite its importance
the only security results for OAEP are a proof of IND-CPA security assuming F
is a one-way trapdoor permutation family [5] and a proof of IND-CCA2 security
assuming F is partial one-way [16], both in the random oracle (RO) model, i.e.,
where G and H are idealized and modeled as random oracles [4]. However, such
proofs merely provide heuristic evidence that breaking the scheme may be hard
in reality (when the random oracles are instantiated with real functions).



A growing number of papers raised concerns regarding soundness of the con-
troversial random oracle model [12, 19, 20, 17, 1, 14, 9, 21]. Moreover, most of the
recent results question security of the practical schemes known to be secure in
the RO model. For example, Dodis et al. [14] showed some evidence that the
RSA Full Domain Hash signature scheme may not be secure in the standard
model. Boldyreva and Fischlin [9] showed that even presumably strong candi-
dates like perfectly one-way hash functions (POWHFs) [11, 13] are insufficient
to prove security of partial instantiations of OAEP (when only one of the two
random oracles is instantiated with an instance of a POWHF).

The motivation of this work is to gather evidence of soundness of the OAEP
design. Like the aforementioned works our goal is to go beyond the classical
RO heuristic and study security of the scheme when one or all of its ROs are
instantiated. Positive results in the direction of partial instantiations would give
further evidence that breaking OAEP for good instantiations is hard, because
breaking the scheme would then require to exploit interdependent weaknesses
between the instantiations or the family F . Given the negative results of [9] it
is unlikely to expect that the properties needed from the instantiating function
families are weak or even easily realizable, even if one accepts weaker security
stipulations than chosen-ciphertext security for partial or full instantiations. For
example, although it seems plausible, it is currently not even known whether
OAEP can be proven IND-CPA secure in the standard model assuming any
reasonable properties of the instantiating functions.

Here we show that security proofs for instantiations of OAEP are indeed
possible. For various security statements about OAEP we specify sufficient con-
ditions on G and H that are certainly weaker than assuming that the functions
behave as random oracles, yielding “positive” security statements regarding par-
tially instantiated OAEP. Furthermore, we give the first non-trivial security re-
sults about fully instantiated OAEP in the standard model, where both oracles
G and H are instantiated simultaneously. We next discuss these results in more
detail.

The OAEP Framework. For better comprehension of our technical results we
first reconsider the OAEP encryption scheme from a more abstract viewpoint.
Let f be a random instance of a partial one-way trapdoor permutation family
F , and the encryption algorithm computes a ciphertext as C = f(s||t). Partial
one-wayness [16] requires that it is hard to find the leading part of the pre-image
s||t under f and to output, say, s only. If we consider now for example a family
Ft-clear where each function is defined as f ≡ g||ID such that f(s||t) = g(s)||t
for a trapdoor permutation g, then this family Ft-clear is clearly partial one-way
(and also a trapdoor permutation). Hence, this example describes a special case
OAEPG,H [Ft-clear] for the partial one-way trapdoor permutation family Ft-clear

where each function outputs the t-part in clear. In particular, the security proof
in the random oracle model for OAEP and general partial one-way families
(including RSA as a special case) [16] carries over, but we outdo this by giving
positive results of partial instantiation for such families Ft-clear.



Towards the standard-model security results for fully instantiated OAEP we
take the above viewpoint one step further and look at OAEPG,H [Flsb||t-clear] for
families Flsb||t-clear where each function f outputs the k1 least significant bits of
s = G(r)⊕M ||0k1 (which equal those bits of G(r)) and t in clear. Since each
function in Flsb||t-clear is also a member in Ft-clear the partial instantiation results
above remain true for OAEPG,H [Flsb||t-clear].

We note that security of partial instantiations of OAEPG,H [Ft-clear] and of
OAEPG,H [Flsb||t-clear], although for qualified partial one-way trapdoor families,
also have implications for the popular OAEPG,H [RSA] case. They show that
any successful attacks on instantiations for RSA would have to take advantage
of specific properties of the RSA function. Generic attacks which would also
work for Ft-clear or Flsb||t-clear are then ruled out.

Partial Instantiation Results. Positive results about partial instantiations
were first shown in [9] for the PSS-E encryption scheme. There it was also shown,
however, that perfectly one-way hash functions cannot be securely used to in-
stantiate either one of the ROs in OAEP. These negative results about partial
instantiation through POWHFs hold for OAEPG,H [Ft-clear] as well. Yet we show
that partial instantiations are possible by switching to other primitives.

To instantiate the G-oracle in OAEPG,H [Ft-clear] while preserving IND-CCA2
security (in the random oracle model), we introduce the notion of a near-collision
resistant pseudorandom generator. For such a generator G it is infeasible to find
different seeds r 6= r′ such that predetermined parts of the generator’s out-
puts G(r), G(r′) match (they may differ on other parts). To be more precise
for OAEPG,H [Ft-clear] the generator G is not allowed to coincide on the k1 least
significant bits, bequeathing this property to the values s = G(r)⊕M ||0k1 and
s′ = G(r′)⊕M ||0k1 in the encryption process. We discuss that such pseudoran-
dom generators can be derived from any one-way permutation.

Instantiating the H oracle in OAEP turns out to be more challenging. To this
end we consider non-malleable pseudorandom generators, where a given image
of a seed r should not help significantly to produce an image of a related seed
r′. Instantiating H through such a non-malleable pseudorandom generator the
resulting scheme achieves NM-CPA security, where it is infeasible to convert a
given ciphertext into one of a related message. Although this security notion for
encryption schemes is not as strong as IND-CCA, it yet exceeds the classical
IND-CPA security. That is, Bellare et al. [3] show that NM-CPA implies IND-
CPA and is incomparable to IND-CCA1 security. Hence, NM-CPA security of
schemes lies somewhere in between IND-CPA and IND-CCA2.1

We also show that it is possible to extend the above result and to instantiate
the H-oracle in OAEPG,H [Ft-clear] without even sacrificing IND-CCA2 security
(again, for random oracle G). This however requires the very strong assump-
tion for the pseudorandom generators which then must be non-malleable under

1 We mitigate the notion of NM-CPA such that the relation specifying related messages
and the distribution over the messages must be fixed at the outset. This mildly affects
the relationship to the IND notions, but we omit technical details in the introduction.



chosen-image attacks. For such a generator non-malleability should even hold if
the adversary can learn seeds of chosen images, and such generators resemble
chosen-ciphertext secure encryption schemes already. Hence, we see this partial
instantiation as a mere plausibility result that one can presumably instantiate
oracle H and still have IND-CCA2 security. This is contrast to the results in [12]
for example, showing that there are encryption schemes secure in the random
oracle model but which cannot be securely realized for any primitive, not even
for a secure encryption scheme itself.

As for the existence of non-malleable pseudorandom generators, we are not
aware if they can be derived from standard cryptographic assumptions, and
we leave this as an interesting open problem. We also remark that, while non-
malleability under chosen-image attacks seems to be a rather synthetic property,
plain non-malleability as required in the NM-CPA result appears to be a modest
and plausible assumption for typical instantiation candidates like hash functions.
For instance, it should not be easy to flip bits in given hash value, affecting bits
in the pre-image in a reasonable way.

Full Instantiation Result. Our main result is a standard-model security
proof for a fully instantiated OAEP. It is not very reasonable to expect a proof
of IND-CCA2 security of OAEP in the standard model, even assuming very
strong properties of instantiating functions (although we all would like to see
such result). As we mentioned above, we are not aware if one can even show
IND-CPA security of fully instantiated OAEP.

Nevertheless we show that OAEP in the standard model can be proven to
satisfy a rather strong notion of security notion, namely $NM-CPA. It is slightly
weaker than the standard non-malleability notion NM-CPA in that there is a
restriction that an unknown random message is encrypted in the challenge ci-
phertext. A bit more formally this security notion $NM-CPA requires that given
a public key and a ciphertext of a challenge message chosen uniformly at random
from a large message space it is hard to compute a valid ciphertext of a message
non-trivially related to the challenge message. Note that this is consistent with
how asymmetric schemes are typically used to build hybrid encryption schemes,
where the key of the symmetric scheme is derived from a random string en-
crypted with the public-key scheme. To appreciate the power of the $NM-CPA
definition we note that it implies for example the notion of OW-CPA and, more-
over, Bleichenbacher’s attack [7] on PKCS #1 v1.5 is not possible for $NM-CPA
secure schemes.2 Thus our result provides better evidence that OAEP resists
such attacks, and specifies what properties of the instantiating functions are
sufficient for this.

2 Bleichenbacher’s attack works by generating a sequence of ciphertexts from a given
ciphertext and verifying validity of the derived ciphertexts by querying the decryp-
tion oracle. While requiring adaptive queries to recover the entire message, one can
view the message in first derived ciphertext in such an attack as having a small (but
not negligible) probability of being non-trivially related to the original (possibly
random) message.



For our full instantiation proof we consider OAEPG,H [Flsb||t-clear] where the
t-part and the least significant bits of the s-part are output in clear. To achieve
the $NM-CPA security notion under full instantiation of both oracles G and H in
OAEPG,H [Flsb||t-clear] we need to augment the near-collision resistant generator G
by a trapdoor property, allowing to invert images efficiently given the trapdoor
information; such generators exist if trapdoor permutations exist. We again use
a non-malleable pseudorandom generator H for instantiating H. Assuming that
the generators above exist we show that OAEPG,H [Flsb||t-clear] is $NM-CPA.3

To give further evidence of the usefulness of the $NM-CPA notion we finally
show that we can derive a hybrid encryption scheme that is NM-CPA in the ran-
dom oracle model from an asymmetric scheme secure in the sense of $NM-CPA.
For this, one encrypts a random string r with the asymmetric scheme and then
runs r through an idealized key derivation process to obtain K = G(r), modeled
through a random oracle G. The actual message is then encrypted with a sym-
metric scheme for key K. The construction of such hybrid encryption schemes
resembles the encryption method in SSL/TLS [18]. There, simply speaking, the
client encrypts a random string under the server’s public key and then both par-
ties derive the actual symmetric key K by hashing the random string iteratively.
If one considers this hashing step as an idealized process then our results pro-
vide a security guarantee for this technique. Observe that this result is still cast
in the random oracle model; yet it separates the security of the key derivation
process from the security of the asymmetric encryption scheme and can be seen
as a partial instantiation for the random oracles in the encryption algorithm.

Prospect. The random oracle model should provide confidence that the design
of a cryptographic scheme is sound, even if a security proof in the standard model
for this scheme is missing. The heuristic argument is that “good” instantiations
of random oracles then give evidence that no “clever” attacks against a scheme
work. But the well-known negative results about the random oracle principle
have raised some doubts how much confidence this security heuristic really gives.

The approach we take here towards challenging the doubts is to trade secu-
rity goals against partial or full instantiations of random oracles. Our “test case”
OAEP shows that this is a viable way and gives more insights in “how clever”
attacks against the instantiations would have to be. And while this still does
not rule out the possibility of extraordinary attacks we see this as an important
supplement to the random oracle heuristic and to the question how instanti-
ating candidates should be selected, hopefully inciting other results along this
direction.

2 Preliminaries

If S is a set then x
$← S means that the value x is chosen uniformly at random

from S. If A is a deterministic (resp. randomized algorithm) with a single output
3 Very recently, Brown [2] has shown that RSA-OAEP cannot be proven OW-CPA

under certain security reductions. Our approach here does not fall under this kind of
reductions and does not contradict his result. We provide more details in Section 3.2.



then x← A(y, z, . . . ) (resp. x
$← A(y, z, . . . )) means that the value x is assigned

the output of A for input (y, z, . . . ). An algorithm is called efficient if it runs
in polynomial time in the input length (which, in our case, usually refers to
polynomial time in the security parameter).

A function family F =
⋃

k F (1k) consists of sets of functions F (1k) = {f :
{0, 1}m(k) → {0, 1}n(k)}. It is called a family of trapdoor permutations if for
each f ∈ F (1k) there exists f−1 such that f(f−1) ≡ ID. We usually identify the
functions f and f−1 simply with their descriptions, and write (f, f−1) $← F (1k)
for the random choice of f (specifying also f−1) from the family F (1k). Unless
stated differently the minimal assumption about a function family in this paper
is that it is one-way, and that it is efficiently computable.

2.1 The OAEP Framework

The OAEP encryption framework [5] is parameterized by integers k, k0 and k1

(where k0, k1 are linear functions of k) and makes use of a trapdoor permutation
family F with domain and range {0, 1}k and two random oracles

G : {0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0 .

The message space is {0, 1}k−k0−k1 . The scheme OAEPG,H [F ] = (K, E ,D) is
defined as follows:

– The key generation algorithm K(1k) picks a pair (f, f−1) ← F (1k) at ran-
dom. Let pk specify f and let sk specify f−1.

– The encryption algorithm E(pk,M) picks r
$← {0, 1}k0 , and computes s ←

G(r)⊕ (M‖0k1) and t← H(s)⊕ r. It finally outputs C ← f(s||t).
– The decryption algorithm D(sk, C) computes s‖t ← f−1(C), r ← t⊕H(s)

and M ← s⊕G(r). If the last k1 bits of M are zeros, then it returns the
first k − k0 − k1 bits of M , else it returns ⊥.

The encryption scheme OAEPG,H [F ] is IND-CCA2 secure in the RO model if
the underlying trapdoor permutation family F is partial one-way [16].

As a side effect of the partial one-wayness result for OAEP [16] we can im-
mediately conclude security of a particular OAEP variant, where we use partial
one-way trapdoor permutation family Ft-clear based on a trapdoor permutation
function family F . Namely, each function ft-clear : {0, 1}k → {0, 1}k in Ft-clear

is described by ft-clear(s||t) ≡ f(s)||ID(t) = f(s)||t for a one-way permutation
f : {0, 1}k−k0 → {0, 1}k−k0 , i.e., the t-part is output in clear. A random instance
(ft-clear, f

−1
t-clear) ← Ft-clear(1k) is sampled by picking (f, f−1) ← F (1k) and set-

ting ft-clear as above (the inverse f−1
t-clear is straightforwardly defined). Then Ft-clear

is clearly partial one-way and thus OAEPG,H [Ft-clear] IND-CCA2 secure in the
random oracle model.

Analogously, we consider another important variant of OAEP where we also
output the k1 least significant bits lsbk1(s) of s in clear and merely apply the
trapdoor function f to the leading k − k0 − k1 bits of s. That is, a random



function flsb||t-clear : {0, 1}k → {0, 1}k in Flsb||t-clear(1k) is described by a random
trapdoor permutation f : {0, 1}k−k0−k1 → {0, 1}k−k0−k1 and flsb||t-clear(s||t) =
f(s1...k−k0−k1)||lsbk1(s)||t. Note that since s = G(r)⊕M ||0k1 this means that we
output the least significant bits lsbk1(G(r)) of G(r) and t in clear. For this reason
we sometimes write s||γ instead of s and denote by γ the k1 bits lsbk1(G(r))
such that flsb||t-clear(s||γ||t) = f(s)||γ||t. Flsb||t-clear is clearly partial one-way and
OAEPG,H [Flsb||t-clear] is IND-CCA2 secure in the random oracle model.

In both cases we often identify Ft-clear resp. Flsb||t-clear simply with the under-
lying family F and vice versa. In particular we often denote a random function
from Ft-clear or Flsb||t-clear simply by f . We call Ft-clear resp. Flsb||t-clear the induced
family of F .

Random Oracle Instantiations. For an instantiation of the random oracle G
in OAEPG,H [F ] we consider a pair of efficient algorithms G = (KGenG,G) where
KGenG on input 1k returns a random key K and the deterministic algorithm4 G
maps this key K and input r ∈ {0, 1}k0 to an output string G(K, r) = GK(r) of
k− k0 bits. Then we write OAEPG,H [F ] for the encryption scheme which works
as defined above, but where the key pair (sk,pk) is now given by sk = (f−1,K)
and pk = (f,K) and where each evaluation of G(r) is replaced by GK(r). We
say that OAEPG,H [F ] is a partial G-instantiation of OAEP through G.

A partial H-instantiation OAEPG,H[F ] of OAEP through H and partial in-
stantiations of the aforementioned OAEP variations are defined accordingly. If
we instantiate both oracles G, H simultaneously then we speak of a full instan-
tiation OAEPG,H[F ] of OAEP through G and H.

2.2 Security of Encryption Schemes

In this section we review the relevant security notions for asymmetric encryp-
tion schemes AS = (K, E ,D). In addition to indistinguishability under chosen-
plaintext and chosen-ciphertext attacks (IND-CPA, IND-CCA1, IND-CCA2) —
see for instance [3] for formal definitions— we occasionally also rely on the no-
tions of non-malleability. This notion was introduced and formalized in [15, 3].
The most basic version is called NM-CPA and says that a ciphertext of a mes-
sage M∗ should not help to find a ciphertext of a related message M , where the
distribution of message M∗ is defined by an efficient distributionM and related
messages are specified by an efficient relation R, both chosen by the adversary.

Definition 1 (NM-CPA). Let AS be an asymmetric encryption scheme. Then
AS is called secure in the sense of NM-CPA if for for every efficient algorithm
A the following random variables Expnm-cpa-1

AS,A (k), Expnm-cpa-0
AS,A (k) are compu-

tationally indistinguishable:

4 In general, the instantiating functions can be randomized. This requires some care
with the decryption algorithms and possibly introduces new attacks. Since our results
all hold with respect to deterministic algorithms this is beyond our scope here; see
[9] for more details.



Experiment Expnm-cpa-1
AS,A (k)

(pk, sk) $← K(1k)
(M, state) $← A(pk)
M∗ $←M
C∗ $← Epk(M∗)
(R,C) $← A(state, C∗)
M ← Dsk(C)
Return 1 iff

(C 6= C∗) ∧R(M∗,M)

Experiment Expnm-cpa-0
AS,A (k)

(pk, sk) $← K(1k)
(M, state) $← A(pk)
M∗ $←M ; M ′ $←M
C ′ $← Epk(M ′)
(R,C) $← A(state, C ′)
M ← Dsk(C)
Return 1 iff

(C 6= C ′) ∧R(M∗,M)

It is assumed that the messages in the support of M have equal length.

We note that the original definition of NM-CPA in [3] actually allows the
adversary to output a vector of ciphertexts. Our results for OAEP merely hold
with respect to binary relations and therefore we restrict the definition here to
such relations. We remark that the aforementioned relationships of NM-CPA to
the indistinguishability notions, e.g., that this notion is strictly stronger than
the one of IND-CPA, hold for relations of arity two as well.

We define a weaker security notion is that of $NM-CPA where the adversary
does not have the ability to choose a distribution over the messages, but where
a random message is encrypted and the adversary tries to find a ciphertext of a
related message.

Definition 2 ($NM-CPA). Let AS = (K, E ,D) be an asymmetric encryption
scheme and letM for input 1k describe the uniform distribution over all `(k) bit
strings for some polynomial `. Then AS is called secure in the sense of $NM-CPA
if for for every efficient algorithm A and for every efficient relation R the fol-
lowing random variables Exp$nm-cpa-1

AS,A,M,R(k), Exp$nm-cpa-1
AS,A,M,R(k) are computationally

indistinguishable:

Experiment Exp$nm-cpa-1
AS,A,M,R(k)

(pk, sk) $← K(1k)
M∗ $←M(1k)
C∗ $← Epk(M∗)
C

$← A(pk, C∗, 〈R〉)
M ← Dsk(C)
Return 1 iff

(C 6= C∗) ∧R(M∗,M)

Experiment Exp$nm-cpa-0
AS,A,M,R(k)

(pk, sk) $← K(1k)
M∗ $←M(1k) ; M ′ $←M(1k)
C ′ $← Epk(M ′)
C

$← A(pk, C ′, 〈R〉)
M ← Dsk(C)
Return 1 iff

(C 6= C ′) ∧R(M∗,M)

While the notion of $NM-CPA is weaker than the one of NM-CPA —in addi-
tion to the restriction to uniformly distributed messages the relation is now fixed
in advance— it yet suffices for example to show security in the sense of OW-CPA
(where the adversary’s goal is to recover a random message in a given ciphertext)
and it also covers Bleichenbacher’s attack on PKCS #1 v1.5. In Section 5 we also
show that the notion of $NM-CPA is enough to derive NM-CPA security under
an idealized key derivation function. Namely, one encrypts a random string r



under the $NM-CPA public-key encryption scheme and then pipes r through a
random oracle G to derive a key K = G(r) for the symmetric scheme. In fact,
one can view the SSL encryption method where the client sends an encrypted
random key to the server and both parties derive a symmetric key through a
complicated hash function operation as a special case of this method. Then this
result about lifting $NM-CPA to NM-CPA security, together with the $NM-CPA
security proof for the full instantiation of OAEPlsb||t-clear, provides an interesting
security heuristic (as long as the key derivation process behaves in an ideal way).

2.3 Pseudorandom Generators

Typically, the minimal expected requirement when instantiating a random oracle
is that the instantiating function describes a pseudorandom generator, consist-
ing of the key generation algorithm KGen producing a public key K and the
evaluation algorithm G mapping a random seed r with key K to the pseudo-
random output. Usually the output of this generator should still look random
when some side information hint(r) about the seed r is given. This probabilistic
function hint must be of course uninvertible, a weaker notion than one-wayness
(cf. [11]).

We also incorporate into the definition the possibility that the key generation
algorithm outputs some secret trapdoor information K−1 in addition to K. Given
this information K−1 one can efficiently invert images. If this trapdoor property
is not required we can assume that K−1 = ⊥ and often omit K−1 in the key
generator’s output.

Definition 3 ((Trapdoor) Pseudorandom Generator). Let KGen be an ef-
ficient key-generation algorithm that takes as input 1k for k ∈ N and outputs a
key K; let G be an efficient deterministic evaluation algorithm that, on input K
and a string r ∈ {0, 1}k returns a string of length `(k). Then G = (KGen,G) is
called a pseudorandom generator (with respect to hint) if the following random
variables are computationally indistinguishable:

– Let K ← KGen(1k), r
$← {0, 1}k, h← hint(r), output (K, G(K, r), h).

– Let K ← KGen(1k), r
$← {0, 1}k, h ← hint(r), u ← {0, 1}`(n), output

(K, u, h).

Furthermore, if there is an efficient algorithm TdG such that for any k ∈ N,
any (K, K−1)← KGen(1k), any r ∈ {0, 1}k we have G(K, TdG(K−1,G(K, r))) =
G(K, r) then (KGen,G,TdG) is called a trapdoor pseudorandom generator.

For our results about OAEP we often need further properties from the pseu-
dorandom generator, including near-collision resistance and non-malleability.
The former means that given a seed r it is hard to find a different seed r′

such that G(K, r) and G(K, r′) coincide on a predetermined set of bits (even if
they are allowed to differ on the other bits). Non-malleability refers to generators
where the generator’s output for a seed should not help to produce an image
of a related seed. We give precise definitions and details concerning existential
questions on site.



3 Partial Instantiations for OAEP

In this section we prove security of partial instantiations of OAEP. Our results
show that one can replace either one of the random oracle in OAEP by reasonable
primitives and still maintain security (in the random oracle model).

3.1 Instantiating the G-Oracle for IND-CCA2 security

We first show how to construct a pseudorandom generator with a special form
of collision-resistance. This property says that finding an input r′ to a ran-
dom input r, such that G(K, r) and G(K, r′) coincide on the k least significant
bits lsbk(G(K, r)), lsbk(G(K, r′)), is infeasible. According to comparable collision
types for hash functions [6] we call this near-collision resistance.

Definition 4 (Near-collision Resistant Pseudorandom Generator). A
pseudorandom generator G = (KGen,G) is called near-collision resistant (for the
least significant k bits) if for any efficient algorithm C the following holds: Let
K ← KGen(1k), r ← {0, 1}k, r′ ← C(K, r). Then the probability that r 6= r′ but
lsbk(G(K, r)) = lsbk(G(K, r′)) is negligible.

Near-collision resistant generators can be built, for example, from one-way
permutations via the well-known Yao-Blum-Micali construction [22, 8]. In that
case, given a family G of one-way permutations the key generation algorithm
KGenYBM(1k) of this generator simply picks a random instance g : {0, 1}k →
{0, 1}k of G(1k), and GYBM(g, r) = (hb(r),hb(g(r)), . . . ,hb(gn−1(r)), gn(r)) is
defined through the hardcore bits hb of g. Since g is a permutation different
inputs r 6= r′ yield different output parts gn(r) 6= gn(r′).

Given a near-collision resistant pseudorandom generator we show how to in-
stantiate the G-oracle in OAEPG,H [Ft-clear] for the family Ft-clear which is induced
by a trapdoor permutation family F (i.e., where a member f : {0, 1}k−k0 →
{0, 1}k−k0 of F is applied to the k-bit inputs such that the lower k0 bits are
output in clear).

Theorem 1. Let G = (KGenG,G) be a pseudorandom generator which is near-
collision resistant (for the k1 least significant bits). Let F be trapdoor permutation
family and let Ft-clear be the induced partial one-way trapdoor permutation fam-
ily defined in Section 2.1. Then the partial G-instantiation OAEPG,H [Ft-clear] of
OAEP through G is IND-CCA2 in the random oracle model.

The full proof appears in the full version [3]. The idea is to gradually change
the way the challenge ciphertext (encrypting one of two adversarially chosen
messages, the hidden choice made at random) is computed in a sequence of
games. We show that each of these steps does not change an adversary’s success
probability of predicting the secret choice noticeably:

– Initially, in Game0 the challenge ciphertext f(s∗)||t∗ for message M∗ is com-
puted as in the scheme’s description by s∗ = G(K, r∗)⊕M∗||0k1 for the
near-collision resistant generator G and t∗ = H(s∗)⊕ r∗ for random oracle
H.



– In Game1 the ciphertext is now computed by setting s∗ = G(K, r∗)⊕M∗||0k1

as before, but letting t∗ = ω ⊕ r∗ for a random ω which is independent of
H(s∗). Because H is a random oracle this will not affect the adversary’s
success probability, except for the rare case that the adversary queries H
about s∗.

– In Game2, in a rather cosmetic change, we further substitute t∗ = ω ⊕ r∗

simply for t∗ = ω, making the t-part independent of the generator’s pre-
image r∗.

– in Game3 we use the pseudorandomness of generator G to replace s∗ =
G(K, r∗)⊕M∗||0k1 by s∗ = u⊕M∗||0k1 for a random u.

Since ciphertexts in the last game are distributed independently of the actual
message security of the original scheme follows, after a careful analysis that de-
cryption queries do not help; this is the step where we exploit that H is still a
random oracle and that G is near-collision resistant. Namely, the near-collision
resistance prevents an adversary from transforming the challenge ciphertext for
values r∗, s∗ into a valid one for the same s∗ but a different r; otherwise the least
significant bits of s∗ = G(K, r∗)⊕M∗||0k1 = G(K, r)⊕M ||0k1 would not coin-
cide and the derived ciphertext would be invalid with high probability. Given
this, the adversary must always use a “fresh” value s when submitting a ci-
phertext to the decryption oracle, and must have queried the random oracle
H about s before (or else the ciphertext is most likely invalid). But then the
adversary already “knows” r = t⊕H(s) —recall that for Ft-clear the t-part is
included in clear in ciphertexts— and therefore ”knows” the (padded) message
M ||z = s⊕ G(K, r) encapsulated in the ciphertext.

3.2 Instantiating the H-Oracle

To instantiate the H-oracle we introduce the notion of a non-malleable pseudo-
random generator. For such a pseudorandom generator it should be infeasible to
find for a given image y∗ = HK(s∗) of a random s∗ a different image y = HK(s) of
a related value s, where the corresponding efficient relation R(s∗, s) must be de-
termined before seeing K and y∗.5 More precisely, we formalize non-malleability
of a pseudorandom generator by the indistinguishability of two experiments. For
any adversary B it should not matter whether B is given f(s∗), y∗ = HK(s∗) or
f(s∗), y′ = HK(s′) for an independent s′ instead: the probability that B outputs
f(s) and y = HK(s) such that s is related to s∗ via relation R should be roughly
the same in both cases.6

5 We are thankful to the people from the Ecrypt network for pointing out that a
possibly stronger definition for adaptively chosen relations allows trivial relations
over the images and cannot be satisfied.

6 Adding the image under the trapdoor permutation uniquely determines the pre-
image of the pseudorandom generator’s output and enables us to specify R(s∗, s)
via the pre-images. Since this also bundles the security of the trapdoor permutation
and the generator, Brown’s recent impossibility result about security reductions for
OAEP [2] does not apply.



Definition 5 (Non-Malleable Pseudorandom Generator). Assume H =
(KGenH,H) is a pseudorandom generator (which is pseudorandom with respect to
hint(x) = (f, f(x)) for (f, f−1) ← F (1k) from the trapdoor function family F ).
Then H is called non-malleable with respect to hint if for any efficient algorithm
B and any efficient relation R the following random variables Expnm-cma-1

H,B,F,R (k),
Expnm-cma-0

H,B,F,R (k) are computationally indistinguishable, where the experiments
are defined as follows.

Experiment Expnm-cpa-1
G,B,F,R (k)

K
$← KGenH(1k)

(f, f−1) $← F

s∗
$← {0, 1}k

y∗
$← HK(s∗)

(z, y) $← B(K, f, f(s∗), y∗)
s← f−1(z)
Return 1 iff

R(s∗, s) ∧ HK(s) = y ∧ s∗ 6= s

Experiment Expnm-cpa-0
G,B,F,R (k)

K
$← KGenH(1k)

(f, f−1) $← F

s∗
$← {0, 1}k ; s′

$← {0, 1}k

y′
$← HK(s′)

(z, y) $← B(K, f, f(s∗), y′)
s← f−1(z)
Return 1 iff

R(s∗, s) ∧ HK(s) = y ∧ s∗ 6= s

Given a non-malleable pseudorandom generator we can prove NM-CPA se-
curity of the partial H-instantiation of OAEP, under the restriction that the
adversarial chosen message distribution and relation are defined at the begin-
ning of the attack via (M, R, state) ← A(1k) and thus depend only the secu-
rity parameter. This relaxed notion still implies for example IND-CPA security
(but for messages picked independently of the public key), is still incomparable
to IND-CCA1 security, and also thwarts Bleichenbacher’s attack. We call such
schemes NM-CPA for pre-defined message distributions and relations.

Theorem 2. Let F be a trapdoor permutation family and let Ft-clear be the in-
duced partial one-way trapdoor permutation family. Let H = (KGenH,H) be a
pseudorandom generator (with respect to hint(x) = (f, f(x)) for (f, f−1) ←
F (1k)). Assume further that H is non-malleable with respect to hint. Then the
partial H-instantiation OAEPG,H[Ft-clear] through H is NM-CPA for pre-defined
message distributions and relations in the random oracle model.

The proof idea is as follows. Assume that an attacker, given a ciphertext
for some values r∗, s∗ (which uniquely define the message in a ciphertext), tries
to prepare a related ciphertext for some value r 6= r∗, without having queried
random oracle G about r before. Then such a ciphertext is most likely invalid
because with overwhelming probability the least significant bits of s⊕G(r) are
not zero. Else, if r = r∗, then we must have f(s) 6= f(s∗) and s 6= s∗, since
the adversarial ciphertext must be different for a successful attack. But then
the values H(K, s∗) and H(K, s) for different pre-images must be related via the
ciphertext’s relation, contradicting the non-malleability of the generator H. In
any other case, if r 6= r∗ and r is among the queries to G, the random value
G(r∗) is independent of G(r). So must be the messages M∗||0k1 = s∗ ⊕G(r∗)
and M ||0k1 = s⊕G(r), as required for non-malleability. Details can be found in
the full version [3].



Replacing the H-oracle without violating IND-CCA2 security is more ambi-
tious and we require a very strong assumption on the pseudorandom generator,
called non-malleability under chosen-image attacks (where the adversary can
also make inversion queries to the trapdoor pseudorandom generator). Since
any pseudorandom generator with this property is already close to a chosen-
ciphertext secure encryption scheme, we rather see this as an indication that a
partial instantiation might be possible and that separation results as [12, 19, 20,
1, 17, 21, 9, 14] seem to be hard to find. The formal treatment of the following
and the proof appear in the full version [10].

Theorem 3. Let F be trapdoor permutation family and let Ft-clear be the induced
partial one-way trapdoor permutation family defined in Section 2.1. Let H =
(KGenH,H,TdH) be a trapdoor pseudorandom generator which is non-malleable
under chosen-image attacks (with respect to hint(x) = (f, f(x)) for (f, f−1) ←
Ft-clear(1k)). Then the partial H-instantiation OAEPG,H[Ft-clear] through H is
IND-CCA2 in the random oracle model.

4 Full Instantiation for OAEP

In this section we prove that there exists a full instantiation of OAEPlsb||t-clear
which is secure in the sense of $NM-CPA in the standard model, implying for
example that the scheme is OW-CPA. Recall that in OAEPlsb||t-clear we write
s||γ = G(s)⊕M ||0k1 instead of s to name the least significant bits explicitly.

To prove our result we need a near-collision resistant trapdoor pseudoran-
dom generator, i.e., which combines near-collision resistance with the trapdoor
property. Such generators can be easily built by using again the Blum-Micali-
Yao generator, but this time by deploying a trapdoor permutation g instead of
a one-way permutation, i.e., the generator’s output for random r is given by
GYBM(g, r) = (hb(r),hb(g(r)), . . . ,hb(gn−1(r)), gn(r)). Letting K−1 contain the
trapdoor information g−1 algorithm TdG can easily invert the k1 least significant
bits y of the output to recover a pre-image r.

To be precise we make use of two additional, specific properties of the Blum-
Micali-Yao generator. First, we assume that recovering a pre-image is possible
given the k1 least significant bits only, i.e., without seeing the remaining part
of the image. To simplify the proof we furthermore presume that the k1 least
significant bits of the generator’s output are statistically close to uniform (over
the choice of the seed).7 We simply refer to generators with the above proper-
ties as a near-collision resistant trapdoor pseudorandom generator (for the least
significant k bits).

Theorem 4. Let F be trapdoor permutation family and let Flsb||t-clear be the in-
duced partial one-way trapdoor permutation family. Let G = (KGenG,G) be a
7 It is easy to adapt the proof to the more general case of arbitrary distributions of the

least significant bits, as long as they support extraction. But this would also require
to change the definition of the non-malleable pseudorandom generator GKG(s||γ) to
support arbitrary distributions on the γ-part.



near-collision resistant trapdoor pseudorandom generator (for the k1 least sig-
nificant bits). Let H = (KGenH,H) be a generator which is pseudorandom and
non-malleable with respect to hint(s||γ) = (f, f(s)||γ) for (f, f−1) ← F (1k).
Then the full instantiation OAEPG,H[Flsb||t-clear] through G and H is $NM-CPA.

The proof appears in the full version [10]. The basic idea is similar to the one
of NM-CPA security for the partial H-instantiation. The important difference
is that the randomness of the encrypted message M in a ciphertext f(s)||γ||t
for s||γ = GK(r)⊕M ||0k1 helps to overcome otherwise existing “circular” de-
pendencies between G and H in the computations of ciphertexts (which, in the
partial instantiation case, do not occur due to the fact that G is a random oracle).

5 Hybrid Encryption from $NM-CPA Schemes

We show that a public-key scheme which is secure in the sense of $NM-CPA
(i.e., for pre-defined relations), together with an IND-CCA2 secure symmetric
scheme suffices to build a NM-CPA secure hybrid scheme in the random oracle
model (i.e., even for adaptively chosen message distributions and relations).

Construction 1. Let AS = (EKasym, Easym,Dasym) be an asymmetric encryp-
tion scheme and let SS = (EKsym, Esym,Dsym) be a symmetric encryption scheme.
Let G be a hash function mapping k-bit strings into the key space of the symmet-
ric scheme. Then the hybrid encryption scheme AS′ = (EK′asym, E ′asym,D′asym) is
defined as follows.

– The key generation algorithm EK′asym(1k) outputs a key pair (sk,pk) $←
EKasym(1k).

– The encryption algorithm E ′asym on input pk,M picks r
$← {0, 1}k, computes

Casym
$← Easym(pk, r), Csym

$← Esym(G(r),M) and returns (Casym, Csym).
– The decryption algorithm D′asym on input (Casym, Csym) and sk computes

r ← Dasym(sk, Casym), M ← Dsym(G(r), Csym) and returns M .

Theorem 5. Let AS = (EKasym, Easym,Dasym) be an asymmetric encryption
scheme which is $NM-CPA. Let SS = (EKsym, Esym,Dsym) be an IND-CCA2
symmetric encryption scheme. Let G be a hash function and assume AS′ =
(EK′asym, E ′asym,D′asym) is the hybrid encryption scheme defined according to
Construction 1. Then AS′ is NM-CPA secure in the random oracle model.

The proof is in the full version [10] and actually shows that the scheme
is NM-CPA with respect to the stronger notion where the adversary outputs a
sequence C = (C1, . . . , Cm) of ciphertexts and the success is measured according
to R(M∗,M) for M = (M1, . . . ,Mm).
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