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Abstract. It has been recently acknowledged [4, 6, 9] that the use of dou-
ble bases representations of scalars n, that is an expression of the form
n =
P

e,s,t
(−1)eAsBt can speed up significantly scalar multiplication on

those elliptic curves where multiplication by one base (say B) is fast. This
is the case in particular of Koblitz curves and supersingular curves, where
scalar multiplication can now be achieved in o(log n) curve additions.
Previous literature dealt basically with supersingular curves (in character-
istic 3, although the methods can be easily extended to arbitrary charac-
teristic), where A, B ∈ N. Only [4] attempted to provide a similar method
for Koblitz curves, where at least one base must be non-real, although their
method does not seem practical for cryptographic sizes (it is only asymp-
totic), since the constants involved are too large.
We provide here a unifying theory by proposing an alternate recoding al-
gorithm which works in all cases with optimal constants. Furthermore, it
can also solve the until now untreatable case where both A and B are non-
real. The resulting scalar multiplication method is then compared to stan-
dard methods for Koblitz curves. It runs in less than log n/ log log n elliptic
curve additions, and is faster than any given method with similar storage
requirements already on the curve K-163, with larger improvements as the
size of the curve increases, surpassing 50% with respect to the τ -NAF for
the curves K-409 and K-571. With respect of windowed methods, that can
approach our speed but require O(log(n)/ log log(n)) precomputations for
optimal parameters, we offer the advantage of a fixed, small memory foot-
print, as we need storage for at most two additional points.
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1 Introduction

In cryptographic algorithms designed around elliptic curves, the most ex-
pensive part is the scalar multiplication nP , where P lies on the curve. In
order to speed up this computation, it was proposed already at a very early
stage of their use to adopt special families of curves where a large multi-
ple of P can be computed very quickly. This is the case of endomorphism
curves [15] or Koblitz curves Ea [17].

We will examine more closely this latter class of curves. Defined over
F2p , they are endowed with the Frobenius endomorphism τ of the rational
point group Ea(F2p). Now, τP is a large multiple of P which can be com-
puted in time O(1) using normal bases or O(p) using polynomial bases.
The map τ is also identified with a complex root of an equation of the form
τ2±τ +2 = 0 that depends only on the curve equation. Using τ , one can de-
vise good scalar multiplication algorithms, see §§ 2.3, 2.5 and 2.6. All these
algorithms compute nP with5 Ω(log n) costly curve operations (such as a
doubling or an addition). We call these algorithms linear (in the number
of curve operations with respect to the bit size of the field), since also the
number of curve operations is O(log n). There are two ways of improving
over these algorithms: either we devise algorithms with lower complexity
(sublinear methods), or we reduce the number of group operations by some
multiplicative factor. We deal here with the former paradigm.

The novelty of our approach is to combine the use of τ with double
bases, first introduced in elliptic curve cryptography in [11]. To achieve
this, we consider a more general setting of double base number systems
(DBNS) that can be applied also to other classes of curves, such as supersin-
gular curves over fields of characteristic 3, where in place of the Frobenius
the fast operation is point tripling. We show how to find decompositions

n =

k−1
∑

i=0

(−1)eiAsiBti

with (A,B) a suitable pair of algebraic integers (such as (2, 3), (3, τ), or
(τ̄ , τ)) si, ti nonnegative integers and ei ∈ {0, 1}. The length k of this ex-
pansion is O(log n/ log log n). Wo reveal, similarly to [6], a scalar multipli-
cation algorithm with cost O(log n/ log log n) curve operations in presence
of a fast group endomorphism. We call such an algorithm sublinear, when
the number of curve operations over the bit size of the field goes to zero.

This is a first instance of a practical sublinear scalar multiplication al-
gorithm with very little precomputations (which depend only on p, not the

5 We use the notation Ω(x) to mean > cx for some positive c.



curve or the point P ) or storage requirements (O(log p) bits). We provide
some computational comparisons with other methods to show that even on
163-bit curves, our method yields better results.

2 Background Material

2.1 Double Bases

Following [8], albeit with a slightly different notation, we will call a (A,B)-
integer a number which can be written as AiBj for some nonnegative inte-
gers i, j. We will extend the definition to algebraic integers, more precisely,
integers in Z[τ ]. We will also allow A,B ∈ Z[τ ]. We define a (A,B)-integer
expansion of n as a decomposition of n into a sum of (possibly signed)
(A,B)-integers. Sometimes this will be also called a DBNS(A,B) recoding.

2.2 Koblitz Curves

For a general presentation of Koblitz curves, we refer to [13, § 15.1.1]. A
Koblitz curve Ea is an elliptic curve defined over F2p , with equation

Ea : y2 + xy = x3 + ax2 + 1 . (1)

Here a = 0 or 1, and p is a prime chosen so to make the order of the group
of points Ea(F2p) equal to twice if a = 1 (resp. four times if a = 0) a prime
number, for at least one choice of a. A point P ∈ Ea(F2p) is then randomly
chosen with order equal to that large prime. In view of Hasse’s theorem,
which states that |#Ea(F2p) − 2p − 1| < 2

p

2
+1, this means that we can

choose P so that ord P is very close to 2p−1 if a = 1 and to 2p−2 if a = 0.
Since Ea has coefficients in F2, the Frobenius map τ(x, y) = (x2, y2) is an
endomorphism of Ea(F2p). Since squaring is a linear operation in charac-
teristic two, computing τP is also linear and takes time O(p). If normal
bases are used to represent elements of F2p , then computing τP is much
faster, since it amounts to making two rotations, which is essentially free.

We can view τ as a complex number of norm 2 satisfying the quadratic
equation τ2 − (−1)1−aτ + 2 = 0, since for any P on the curve, τ2P +

2P = (−1)1−aτP . Explicitly, τ = (−1)1−a+
√
−7

2 . We will also make use of
the conjugate τ̄ = (−1)1−a − τ of τ . This corresponds to the dual of the
Frobenius endomorphism.

2.3 The τ -NAF for Koblitz Curves

All facts here are stated without proofs: These are found in [24, 25].
Let us consider the Koblitz curve Ea defined over F2p by equation (1),

with base point P , and let τ denote the Frobenius endomorphism. We have



seen that we can view τ(P ) as multiplication by τ and let Z[τ ] operate on
P , but in fact there exists an integer λ such that τ(P ) = λP , and thus τ
operates on the whole subgroup generated by P like multiplication by λ.

The τ -adic non-adjacent form (τ -NAF for short) of an integer z ∈ Z[τ ]
is a decomposition z =

∑

i ziτ
i where zi ∈ {0,±1} with the non-adjacency

property zjzj+1 = 0, similarly to the classical NAF [21]. The average den-
sity (that is the average ratio of non-zero bits related to the total number
of bits) of a τ -NAF is 1/3. Each integer z admits a unique τ -NAF.

The length of the τ -NAF expansion of a randomly chosen scalar n is
≈ 2p, whereas the bit length of n is ≈ p. But, for any point P ∈ Ea(F2p) r
Ea(F2), τpP = P and τP 6= P .

Since the ring Z[τ ] is Euclidean we can take the remainder ζ of n mod
τp−1
τ−1 and use it in place of n. This ζ will have smaller norm than that of

(τp−1)/(τ −1), and thus length at most p. Its τ -NAF is called the reduced
τ -NAF of n and when P has prime order, it can be shown that nP = ζP .

The double-and-add scalar multiplication algorithm is a Horner scheme
for the evaluation of nP using the binary expansion of n =

∑ℓ
i=0 ni2

i as
∑ℓ

i=0 ni2
iP . In a similar way we can evaluate zP =

∑

i ziτ
i(P ) by a Horner

scheme, and the the corresponding algorithm is called a τ -and-add algo-
rithm. It is much faster than the double-and-add scheme on Koblitz curves
because Frobenius evaluations are much faster than doublings.

2.4 Point Halving

Point halving (see [16] and [22, 23]) is a technique to improve the perfor-
mance of cryptosystems based on binary elliptic curves. The idea is to re-
place, in the double-and-add algorithm for scalar multiplication, doublings
2Q by halvings 1

2Q = ord Q+1
2 Q. Even though halving is not as fast as

a Frobenius operation, it is much faster than doubling (between two and
three times faster), according to literature [16, 22, 23] as well as [14].

2.5 Inserting a Halving in the τ -adic Scalar Multiplication

In [1] a single point halving is inserted in the “τ -and-add” scalar multiplica-
tion. This brings a non-negligible speedup (up to 14%) with respect to the
use of the τ -NAF, but is not optimal. In [3] the method is refined in order
to bring the speed-up to 25%, and the resulting method is proved optimal
among similar methods that do not require any precomputation. The basic
idea in both approaches is to express nP as

∑

i e0,iτ
i(P )+

∑

i e1,iτ
i(Q) with

Q = 1
2P and a smaller total Hamming weight of the ej,i’s. The τ -and-add

loop is repeated two times: first
∑

i e1,iτ
i(P ) is computed, then the result is

halved and a second τ -and-add loop is performed like for the computation
of
∑

i e0,iτ
i(P ), but starting with the result just obtained in place of 0.



2.6 Further Developments in τ -adic Representations

The authors of [19] generalize the approach of [1] to expressions of the form
∑

i e0,iτ
i(P ) +

∑

i e1,iτ
i(f1(P )) + . . . +

∑

i e2u−2−1,iτ
i(f2u−2−1(P )), where

1 and the fj are representants of the residue classes modulo τu in the ring
Z[τ ] which are coprime to τ , and ej,i ∈ {0,±1}. Such an expression can
be obtained from a τ -adic windowed recoding [25]. If a window of width u
is used, then the τ -and-add loop is performed 2u−2 times in place of two
times as in the method of § 2.5. Thus, the number of Frobenius operations
can increase exponentially with u. To ensure that this does not become a
performance problem if polynomial bases are used, a technique from [20]
is adopted to convert between normal and polynomial bases as required to
quickly compute iterated Frobenius operations.

At the end of the τ -and-add loop corresponding to the digit fj the par-
tial result must be multiplied by fj+1/fj before starting the τ -and-add loop
corresponding to the next digit fj+1. The relations between the fj’s and
their inverses must then be given explicitly. In [19] this is done for w = 5.
Even though the authors cannot present the results in a completely general
way, in the case described in [19] the reduction in memory consumption (or,
equivalently, the speed-up with respect to other methods with no precom-
putations) is noteworthy. In order to generalize their approach the digit set
itself has to be modified. In [2] it is shown how to do so.

2.7 Supersingular Elliptic Curves in Characteristic 3

We refer to [18] for generalities on supersingular elliptic curves. We will
consider the curves Eb defined over F3m by the Weierstraß equations [5]

y2 = x3 − x + b

with b = ±1. On these curves, the tripling operation sends P = (x, y) to
3P = (x9 − b,−y9), meaning that point tripling is essentially equivalent to
two Frobenius and its cost will be considered negligible.

3 Theoretical Preliminaries

All the new results proving the sublinearity of the new DBNS decomposi-
tions are based on the following propositions. These results appears natu-
rally in any elementary number theory book during the proof of the struc-
ture theorem for (Z/m)⋆, the multiplicative group of invertible classes mod-
ulo m. In the sequel, we letR be a unique factorization domain containing Z
(we will consider in practice R = Z and R = Z[τ ], where τ is the Frobenius
endomorphism on a Koblitz curve). This is more stringent than necessary,
however, it will make the proofs less elaborate.



Notation: For gcd(a, b) = 1, we denote ordb(a) the multiplicative order of
a (mod b).

Lemma 1. Let π be a prime, p > 0 a generator of πR ∩ Z and k ≥ 2 an
integer. Let a ∈ R. Then (1 + aπk)p ≡ 1 + paπk (mod πk+2).

Proof. Note first that p is prime in Z. Using the binomial theorem, we
write out the left-hand side of the congruence as (1 + aπk)p = 1 + paπk +
∑p

i=2

(

p
i

)

aiπki. If k ≥ 2, then 2k ≥ k + 2 so that πk+2 | πki. ⊓⊔

Now the following result is proved immediately by induction.

Lemma 2. Let π, p, k, a as in Lemma 1. If u ≥ 0, then (1 + aπk)p
u

≡
1 + puaπk (mod πk+u+1).

Lemma 3. Let π, p be as in Lemma 1, α, β ∈ R such that α ≡ β (mod πu)
for some u ≥ 1. Then αp ≡ βp (mod πu+1).

Proof. We proceed as in the proof of Lemma 1. We write α = β + aπu.
Then αp = βp +

∑p
i=1

(p
i

)

βp−iaiπiu. Note that πu+1 | πiu if i ≥ 2. For i = 1
the term in the summation is pβp−1aπu. Since π | p, we are done. ⊓⊔

Theorem 1. Let α ∈ R and d = ordπ2(α). Assume also that π is unrami-
fied over p, in other words that π ∤ (p/π). Let

k = max{u ≥ 2: d = ordπu(α)} .

Then

ordπu(α) =

{

d if u ≤ k ,

dpu−k if u > k .

Proof. It is clear that ordπu(α) = d if u ≤ k. We then prove by induction
that

ordπk+u(α) = dpu if u ≥ 1 .

Since αd ≡ 1 (mod πk) we deduce by Lemma 3 αdp ≡ 1 (mod πk+1).
Therefore ordπk+1(α) | dp but also d | ordπk+1(α) and d 6= ordπk+1(α)
by definition of u. Hence ordπk+1(α) = dp and the initial step (u = 1) of
induction is proved.

Assume therefore that ordπk+u(α) = dpu.
Notice also that we must then have

αd = 1 + aπk (mod πk+1) where π ∤ a .

By Lemma 2, we then have

αdpu

≡ 1 + puaπk ≡ 1 + a(p/π)uπk+u (mod πk+u+1) .



Since π | p is unramified, we have αdpu

6≡ 1 (mod πk+u+1). By the in-
duction hypothesis, dpu | ordπk+u+1(α) and we just found that these two
numbers are different. Since by Lemma 3 again ordπk+u+1(α) | dpu+1 and p
is prime, it must be ordπk+u+1(α) = dpu+1. This completes the proof. ⊓⊔

We can appeal to this theorem to easily find the order of known ele-
ments to a power of a prime. We let τ be the Frobenius on a Koblitz curve as
described previously, viewing it as a complex root of X2 +(−1)aX +2 = 0.
Then Z[τ ] is Euclidean hence a unique factorization domain. We have that
τ is prime in Z[τ ] and likewise for τ̄ = (−1)a+1 − τ , its complex conjugate.
Also, τ | 2 = τ τ̄ is unramified, since τ and τ̄ are coprime.

Corollary 1. We have the following.

ord3u(2) = 2 · 3u−1 u ≥ 1 ,

ord2u(3) = 2u−2 u ≥ 3 ,

ordτu(3) = 2u−2 u ≥ 3 ,

ordτu(τ̄) = 2u−2 u ≥ 3 .

Proof. The first equality follows from the fact that 6 = ord9(2) < ord27(2)
and an actual verification for u = 1.

For the second, notice that ord4(3) = 2 = ord8(3) < ord16(3).
For the third, it suffices to notice that 2u | 3i−1 if and only if τu | 3i−1.

The “only if part” is obvious, since τ | 2. For the “if” part, notice that by
taking conjugates we also have τ̄u | 3i − 1 and since τ and τ̄ are coprime we
get τuτ̄u | 3i − 1.

Finally, (−1)a+1τ̄ = −1 − τ2, hence τ̄2 = 1 + τ̄ τ3 + τ4. This yields im-
mediately 2 = ordτ2(τ̄ ) = ordτ3(τ̄) < ordτ4(τ̄ ) if a = 1 or 1 = ordτ2(τ̄) <
2 = ordτ3(τ̄) < ordτ4(τ̄ ) if a = 0 and the last formula. ⊓⊔

This leads to the main theorem of this section.

Theorem 2. 1. Every N ∈ Z with 3 ∤ a is congruent modulo 3u, (u ≥ 1),
to precisely one of the numbers 2j , 0 ≤ j < 2 · 3u−1.

2. Every N ∈ Z[τ ] with τ ∤ N is congruent modulo τu, (u ≥ 3), to precisely
one of the numbers (−1)eAj , e = 0, 1 and 0 ≤ j < 2u−2, for A = 3 or τ̄ .

Proof. There are exactly φ(3u) = 2 · 3u−1 residue classes coprime to the
modulus 3u. Hence, the first part of the theorem follows from the first equal-
ity of Corollary 1.

For the second, begin by noting that #Z[τ ]/τu = 2u (since the norm of
τu is 2u) and #

(

Z[τ ]/τu
)⋆

= 2u−1, since elements divisible by τ are exactly



the kernel of the reduction homomorphism Z[τ ]/τu → Z[τ ]/τ . Therefore
it suffices to prove that the numbers listed in the theorem are all distinct
modulo τu. Suppose then that (−1)eAj ≡ (−1)e

′

Aj′ (mod τu). Reducing
modulo τ3, we get that e = e′, since the coprime residues modulo τ3 are
±1,±A. Hence Aj ≡ Aj′ (mod τu) and by Corollary 1, we must have j =
j′. This proves the theorem. ⊓⊔

4 Algebraic Algorithms for DBNS Recoding and Scalar

Multiplication

The results hitherto proved allow us to provide new double base recodings
of scalars. Unlike previous algorithms [4, 6, 8, 9] these are not greedy and
proceed from right to left (i.e. from the smallest powers of the fast endo-
morphism to the largest).

Algorithm 1. Unsigned right-to-left DBNS(2,3) recoding

Input: An integer n > 0 and a parameter u.

Output: Two arrays s[ ], t[ ] and their common length k. The arrays are
sequences of exponents in the decomposition n =

Pk−1
i=0 2s[i]3t[i]

1. N ← n, i← 0, t← 0

2. t[ ]← 0, s[ ]← 0

3. while N ≥ 43u−1

do

4. while 3 | N do

5. N ← N/3, t← t + 1

6. Find 0 ≤ j < 3u−12 with N ≡ 2j (mod 3u)

7. N ← (N − 2j)/3u

8. s[i]← j, t[i]← t

9. t← t + u, i← i + 1

10. while N > 0 do

11. while 3 | N do

12. N ← N/3, t← t + 1

13. if N ≡ 1 (mod 3) then

14. N ← (N − 1)/3, s[i]← 0

15. else

16. N ← (N − 2)/3, s[i]← 1

17. t[i]← t, t← t + 1, i← i + 1

18. return s[ ], t[ ], i

Algorithm 1 implements a first version of a new DBNS recoding. We
have given here an unsigned version, which, by a result of [4] must have at
least (1 + o(1)) log n/ log log n terms. The algorithm works by Theorem 2,
which says that in Step 6 we can always find j. The termination of the al-
gorithm is also simple here since in Step 7, N stays positive but becomes



strictly smaller. A signed version, suitable for implementation on Eb, can
be readily obtained and is left to the reader.

Algorithm 2 implements a signed algorithm using a complex double
base (3, τ), resp. (τ̄ , τ), to be used on a Koblitz curve Ea, resp. a super-
singular elliptic curve in characteristic 3.

Algorithm 2. Signed right-to-left DBNS(A, τ ) recoding (A = 3 or τ̄)

Input: An integer ζ ∈ Z[τ ] and a parameter u.

Output: Three arrays s[ ], t[ ], e[ ] and their common length k. The arrays are
sequences of exponents in the decomposition n =

Pk−1
i=0 (−1)e[i]As[i]τ t[i].

1. N ← ζ, i← 0, t← 0

2. t[ ]← 0, s[ ]← 0, e[ ]← 0

3. while |N | ≥ 22u−1

[See Remarks below]

4. while τ | N do

5. N ← N/τ , t← t + 1

6. Find 0 ≤ j < 2u−2 and e = 0, 1 with N ≡ (−1)eAj (mod τu)

7. N ← (N − (−1)eAj)/τu

8. s[i]← j, t[i]← t, e[i]← e

9. t← t + u, i← i + 1

10. while |N | > 0 do

11. while τ | N do

12. N ← N/τ , t← t + 1

13. if N ≡ 1 (mod τ 2) then

14. N ← (N − 1)/τ 2, e[i]← 0

15. else

16. N ← (N + 1)/τ 2, e[i]← 1

17. t[i]← t, t← t + 2, i← i + 1

18. return s[ ], t[ ], e[ ], i

Remarks

1. In the case A = τ̄ , we can replace the lower bound in line 3. by 22u−3
.

2. To reduce the length of the expansion, it is possible to adapt u to the
size of N . For instance, if A = τ̄ , replace line 3. by

3. while |N | > 0 do

and after line 5. add

6. while |N | < 2
2

u−2
−1

2 do u← u− 1

Doing that, lines 10. to 17. are no longer necessary. This modification
helps to save a few more additions in Algorithm 4. See Table 1.

By Theorem 2 again, the algorithm is consistent. The only point left to
show is that it will terminate, namely that we have eventually N < 22u−1

,
since upon entering Step 10, the algorithm computes the τ -NAF of N ,
hence termination is guaranteed.



Indeed notice that if N ≥ 22u−1
then

|(−1)eAj | ≤ 3j < 32u−2
< 42u−2

≤ |N | (2)

therefore in Step 7
∣

∣

∣

∣

N − (−1)eAj

τu

∣

∣

∣

∣

<
2 |N |

|τu|
=

|N |

|τu−2|
< |N | (3)

since u ≥ 3. Since |N |2 ∈ N (it is the norm of the algebraic integer N ∈

Z[τ ]), eventually |N | < 22u−1
and the algorithm terminates.

In the case when A = τ̄ and the lower bound is 22u−3
, we replace (2) by

|(−1)eτ̄ j| ≤ 2j/2 < 22u−3
≤ |N |

and we proceed as in (3) to show that |N | diminishes. Therefore our algo-
rithms are correct. Notice that we apply Algorithm 2 to ζ, the reduced
τ -NAF of n (see Section 2.3).

After running Algorithms 1 or 2 and before Algorithm 3, that com-
putes the scalar multiplication, we have to shuffle the indices i in the arrays
e[ ], s[ ], t[ ] so as to get s[i + 1] ≥ s[i] for all i and t[i + 1] > t[i] in case
s[i + 1] = s[i]. In Algorithm 3, set e[i] = 0 if using an unsigned recoding.

Algorithm 3. Scalar Multiplication from a DBNS(A,B) expansion

Input: A point P on the curve Ea or Eb and the arrays e[ ], s[ ], t[ ] of length
k such that s[i + 1] ≥ s[i] and t[i + 1] > t[i] whenever s[i + 1] = s[i].

Output: The point Q on Ea or Eb such that Q =
Pk−1

i=0 (−1)e[i]As[i]Bt[i]P .

1. Q← O, i← k − 1

2. s[−1]← 0

3. while i ≥ 0 do

4. Let j ≤ i be the min index with s[j] = s[i]

5. R← (−1)e[i]P

6. while i > j do

7. R← Bt[i]−t[i−1]R + (−1)e[i−1]P

8. i← i− 1

9. Q← Q + R

10. Q← As[i]−s[i−1]Q

11. return Q

5 Comparison with Established Methods

We want here to give an idea of how well Algorithm 2 fares with (τ̄ , τ) on
Koblitz curves standardized by NIST. We compare our new multiplication



algorithm with the τ -and-add using a τ -NAF expansion [24] and the width-
w τ -NAF expansion [25].

For a given value of u, by (3), the number of iterations in the main
loop (Steps 3 to 9) is bounded by the quantity c such that |ζ| = |τu−2|c =
2

c
2
(u−2). This gives

c =
2 log2 |ζ|

u − 2
=

p

u − 2

for a generic scalar, by the way ζ is constructed. Also, since the “tail” (i.e.
the quantity processed in Steps 11 to 17) is a generic integer of Z[τ ] of norm

less than 22u−2
, its expected Hamming weight is bounded by 2u−2/3. Thus,

the average Hamming weight of the new expansion is bounded by

p

u − 2
+

2u−2

3
,

and its worst case by
p

u − 2
+ 2u−3 + 1 . (4)

In practice, when N is large in (3), the new value of N has absolute value
much closer to |N |/|τu|, therefore we should expect a Hamming weight
closer to the value

p

u
+

2u−2

3
· (5)

Algorithm 3 then implies that the total cost of a scalar multiplication
equals at most p/u+2u−2/3 additions plus 2u−2 applications of τ̄ . Since an
application of τ̄ = (−1)1−a − τ corresponds to a curve addition, the total
cost (in curve additions) is bounded from above by

f(u) =
p

u
+

2u

3
·

In the previous argument, following [4, Section 4], we neglected the cost
of applying τ , as we will in the following comparisons. See also Section 7
for a concrete approach to reducing the impact of the Frobenius to a non-
dominant term.

We can modify Algorithm 3 to make use of the advantage of halvings
over multiplications by A = τ̄ (at least a 50% saving in performance). In-

deed, let ζ ′ = 22u−2
ζ (mod τp−1

τ−1 ) with minimal norm. From a DBNS(τ̄ , τ)
expansion

ζ ′ =

k−1
∑

i=0

(−1)e
′

i τ̄ s′iτ t′i



get that

nP = ζP =
k−1
∑

i=0

(−1)e
′

i
τ̄ s′i

22u τ t′iP =
k−1
∑

i=0

(−1)e
′

i
τ t′i−s′i

22u−s′i
P

=
k−1
∑

i=0

(−1)e
′

i
τ ǫip+t′i−s′i

22u−s′i
P

where ǫi = 1 if t′i < s′i and 0 else. Note that this is a valid DBNS(1/2, τ)
expansion, because for different values of i, j, the same powers of 1/2 and τ
occur only if s′i = s′j and either t′i − s′i = t′j − s′j or t′i − s′i = p + t′j − s′j.
Since the pairs (s′i, t

′
i) arise from a DBNS expansion and t′i < p, either case

is impossible.
In this case, from (5) and the subsequent analysis, we can conclude that

the cost of one scalar multiplication using a DBNS(1/2, τ) expansion is up-
per bounded on average by g(u) curve additions, where

g(u) =
p

u
+

5

24
2u .

For various parameters of p corresponding to the NIST curves K-163
(a = 1), K-233 (a = 0), K-283 (a = 0), K-409 (a = 0), K-571 (a = 0),
Table 1 gives the scalar multiplication costs in elliptic curve additions (with
the assumption that two halvings are equivalent to one addition) using the
τ -NAF, width-w τ -NAF (w-τ -NAF) and our new recodings, on average, as
well as the percentage improvement over those methods and the value of u
used in minimizing the functions f(u) and g(u). In each case, the average
is computed over 25,000 values.

Field size p τ -NAF w-τ -NAF w DBNS(τ̄ , τ ) u DBNS( 1
2
, τ ) u %/τ -NAF %/w-τ -NAF

163 54.33 34.16 5 34.60 5 31.09 5 42.78% 8.99%

233 77.66 45.83 5 46.60 5 41.38 6 46.72% 9.71%

283 94.33 54.16 5 54.38 5 48.80 6 48.27% 9.90%

409 136.33 73.42 6 74.40 6 66.89 6 50.94% 8.90%

571 190.33 102.37 6 97.18 6 88.04 7 53.74% 14.00%

Table 1. Comparison of scalar multiplication algorithms on Koblitz curves



6 Asymptotic Improvements

We now establish the asymptotic behavior of our new scalar multiplication
algorithm. Its sublinear nature will be thus revealed. We have the following.

Theorem 3. Algorithms 1 and 2 allow to express nP , where P ∈ Eb or
P ∈ Ea, as

nP =

(

k−1
∑

i=0

(−1)eiAsiBti

)

P with (si, ti) 6= (sj , tj) for i 6= j ,

where (A,B) = (2, 3) in the case of Eb and (A,B) = (3, τ) or (τ̄ , τ) in the
case of Ea. The length k satisfies on average (the worst case being twice as
large only in the case of Ea)

k ≤
(

1 + o(1)
) log n

log log n
as n → ∞ ,

and max si ≤ log n/(log log n)2.
Therefore scalar multiplication nP can be performed via Algorithm 3 on

these curves with an average cost of less than
(

1+o(1)
)

log n/log log n curve
additions.

Proof. We detail the proof in the case of Koblitz curves. In the DBNS(2, 3)
case, simple modifications lead to the analogous result. We start with (4),
letting u = ⌊2 + log2 p − 2 log2 log p⌋. We then find that k ≤ p

log2 p
+

o
(

p

logp

)

. Since on average p = log2 n we are done in the average case. In

the worst case p has to be replaced by 2 log2 |ζ|, where ζ = n if n is too
small. The (average) bound on the si is immediate from Step 6 in Algo-
rithm 2.

Since the total cost of Algorithm 3 differs from the Hamming weight k
by a multiple of 2u−2 = o(p/ log p) we are done. ⊓⊔

7 On the Use of Normal vs. Polynomial Bases

Neglecting the cost of τ is fine if normal bases are used, but when poly-
nomial bases are used Frobenius operations can become expensive as u in-
creases. One solution is provided, as already mentioned, by a technique in-
troduced by Park et al. in [20] and used by Okeya et al. in [19]. Instead
of applying a variable power of the Frobenius to a changing point as done
in Steps 5 to 9 if Algorithm 3, we apply the Frobenius to the point P and
accumulate directly. Only, the Frobenius is performed on a copy of P that



has been converted to normal basis representation (hence, all powers of the
Frobenius have essentially the same cost), and then the result is converted
back to polynomial basis representation before adding it to the accumula-
tor variable that will contain the final result at the end of the algorithm.

Algorithm 4. (τ̄ , τ )-Double Bases Scalar Multiplication on Koblitz Curves

Input: A point P on Ea, a scalar z and arrays e[ ], s[ ], t[ ] of length k with
s[i + 1] ≥ s[i] such that z =

Pk−1
i=0 (−1)e[i]τ̄ s[i]τ t[i].

Output: The point Q on Ea such that Q = zP =
Pk−1

i=0 (−1)e[i]τ̄ s[i]τ t[i]P .

1. R← normal basis(P ) [Keep in affine coordinates]

2. Q← 0 [Use López-Dahab coordinates]

3. for i = k − 1 to 0 do

4. if i 6= k − 1 and s[i] 6= s[i + 1] then

5. for j = 1 to s[i + 1]− s[i] do

6. Q← τ−1Q, Q← 2Q

7. Q← Q + e[i] · polynomial basis(τ t[i]R) [Mixed coordinates]

8. return Q

With our notation the resulting method is presented as Algorithm 4,
in a version that uses mixed coordinate arithmetic and projective (P) or
López-Dahab (LD) coordinates [12, § 13.3] while keeping the points P and
R in affine (A) coordinates.

There we use the fact that 2 = τ τ̄ to implement τ̄ as a doubling with
an inverse of a Frobenius, an operation that requires three square root ex-
tractions in P or LD. A square root extraction costs between 1/8 and 1/2
of a multiplication depending on the field [14]. A doubling in LD costs
4 multiplications and 4 squarings, whereas a mixed coordinate addition
(i.e. adding a point in A to a point in LD with a result in LD) costs 9
multiplications and 5 squarings. The time required by a basis conversion
(routines normal basis and polynomial basis) is roughly the same as one
polynomial basis multiplication, and the conversion routines require each
a matrix that occupies O(p2) bits of storage [7]. Hence Steps 1 and 6 cost
each about two field multiplications. The time for an evaluation of τ̄ is then
roughly a half of the time for an evaluation of the addition (including the
basis conversion).

8 Conclusion

This work shows that using double bases in scalar multiplication improves
performance significantly, even for the smallest cryptographic parameters,
at almost no additional memory cost. This method however is only effec-
tive if multiplication by one of the bases can be neglected, as was shown



in [4]. The resulting new scalar multiplication algorithms are especially fast
on Koblitz curves and supersingular curves of characteristic three used in
pairing-based cryptosystems.

As this work is being written, other articles on the same subject are
about to be published. In [10], accepted at CHES 2006, the authors present
practical measurements on FPGA and show that indeed one achieves a 50%
speedup already on the smallest Koblitz curve K-163 by using short decom-
positions found by a clever extensive search. The paper [2], to appear in the
proceedings of SAC 2006, among other things contains results similar to
ours, but expressed in the language of expansions with respect to a single
base using suitably defined digit sets.
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