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Abstract. We introduce the server-aided verification (SAV) concept, which consists in speeding up
the verification step of an authentication/signature scheme, by delegating a substantial part of com-
putations to a powerful (but possibly untrusted) server. After giving some motivations for designing
SAV protocols, we provide a simple but realistic model, which captures most situations one can meet
in practice (note that this model is much more general than the one recently proposed by Hohenberger
and Lysyanskaya, who require the server to be made of two softwares which do not communicate with
each other [13]). Then, we analyze and prove in this model the security of two existing SAV protocols,
namely the Lim-Lee [14] modification of Schnorr scheme [25] and the Girault-Quisquater variant [9] of
GPS scheme [6, 22]. Finally, we propose a generic method for designing SAV versions of schemes based
on bilinear maps, which can be applied to the Boneh-Boyen signature schemes [3], the Zhang-Safavi-
Naini-Susilo [29] signature scheme and the Shao-Lu-Cao identification scheme [27].

Key words: identification protocol, digital signature, interactive proof, zero-knowledge, discrete
logarithm, non-repudiation, bilinear map, pairing.

1 Introduction

Designing efficient signature and identification (or authentication) schemes is one of the main
challenges of public key cryptography. Indeed, with the development of smart cards and RFID
tags, or more generally low cost chips with small computation capabilities, it becomes crucial to
propose schemes suited to such devices.

Until now, research has essentially focused on speeding up the prover/signer computations. In
particular, zero-knowledge (ZK) paradigm [11] has led to very efficient schemes, including Fiat-
Shamir [5], Guillou-Quisquater [12], Schnorr [25] and GPS [6, 22] protocols. Another research direc-
tion was to speed-up RSA [24] private operation by sharing the computation task with a powerful
but untrusted computer [15]. The latter approach, usually named ”server-aided RSA”, is delicate
and many proposals have been broken (see e.g. [18–20]).

On the other hand, speeding up the verification task has been relatively few scrutinized. One
reason may be that RSA is very efficient from this point of view. Indeed, the use of a small public
exponent leads to a few modular multiplications to perform, and even only one in the variant from
Rabin [23]. Furthermore, the task of doing a modular reduction can be reduced to a still lighter
operation by using various tricks (e.g. [28]). Finally, batch verification allows a server to verify many
RSA signatures in an optimized manner ([1]).

Nevertheless, RSA leaves open the problem of designing an identification scheme which is ef-
ficient at both ends. A first valuable solution may be ZK factorization-based schemes, as they
generally involve a moderate and well-balanced computational task at each end. However, in many



environments, this task still remains too heavy. For instance, if the prover’s device is a low cost
smart card and/or if the transaction must take place in very few milliseconds, then significantly
faster computations are required.

Discrete-logarithm-based schemes, when used in their ”coupon mode” ([17]), allow the signer
to compute the signature in a particularly fast manner. A coupon is essentially a precomputed
exponential, leaving the signer with an ultra-light task (typically a modular multiplication with
a small modulus or even less) at the time of signing. The verifier has a price to pay, since he
must compute the exponential of a rather large number. As a consequence, speeding up verification
step in a discrete-logarithm-based scheme is a very significant challenge, both from theoretical and
practical points of view.

In a client-server environment, this challenge can be solved by using precomputation techniques,
which allow to decrease the average time of verification by a factor close to five [4]. A more general
approach would consist in sharing the computations with a powerful but untrusted server. Since it
is the analogue of ”server-aided RSA” at the verifier’s side, we call it ”server-aided verification”.
The main difference between these two notions is that the verification does not involve private keys,
so that there is no concern with confidentiality. On the other hand, there is a major concern with
integrity : the output of verification step must be trusted by the verifier -or it has no value at all.

In real world there are many situations in which a secure but not powerful chip is connected
to a powerful but not secure powerful device. For example, in a GSM mobile telephone, the more
sensitive cryptographic operations are performed in the so-called SIM (Subscriber Identification
Module), which is already aided by the handset chip, mainly to decipher the over-the-air enciphered
conversation. In a payment transaction, a so-called SAM (Secure Access Module) is embedded in
a terminal already containing a more powerful chip. We can also mention the example of a smart
card plugged into a personal computer, seeing that many PCs will be equipped with smart card
readers in a near future.

This paper is about server-aided verification in general, applied to discrete-logarithm-based
schemes in particular. While not using this name, nor providing formal definitions and proofs,
a few authors have already addressed this problem. In the late 80’s, at Cardis 2000 conference,
Quisquater and De Soete proposed tricks to speed up RSA verification with a small exponent [28].
At Eurocrypt’95 conference, Lim and Lee gave a generic method, based on the ”randomization”
of the verification equation [14]. This equation is only known to the verifier, so that a cheater can
solve it only if he guess it: security is unconditional. The counterpart of this nice method is that
the verifier must perform a heavy precomputation before carrying out the transaction.

A completely different approach has been proposed by Girault and Quisquater [9] and described
in European NESSIE project final proceedings [8]. While no precomputation nor randomization is
required, the security remains computational, based on the hardness of a sub-problem (namely
factorization) of the initial underlying problem (namely composite discrete logarithm).

Recently, at TCC’05, Hohenberger and Lysyanskaya addressed the situation in which the server
is made of two untrusted softwares, which are assumed not to communicate with each other [13].
While this assumption is very particular and much stronger than ours (since, in essence, we assume
that the verifier does not trust anybody nor anything except himself), it allows a very light public
computation task (typically one modular multiplication in the Schnorr scheme).

Starting from this background, the motivation of this paper was two-fold: first, clarify the
properties that server-aided verification must satisfy and classify the different approaches to achieve
them; second, extend the class of protocols for which verification can be server-aided. The result is
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as follows: in section 2 we define our model and identify three possible approaches to achieve the
main property. In section 3 we prove in this model the security of the two state-of-the art protocols
mentioned above. In section 4 we propose a generic method applicable to signatures schemes based
on bilinear maps (in particular Boneh-Boyen [3] and Zhang-Safavi-Naini-Susilo [29]), and prove
them secure in our model. Finally, we provide a conclusion.

2 Model

2.1 An Illustrative Example

Let us illustrate the notion of server-aided verification with RSA signature scheme. In this scheme,
the signer computes a signature σ of the message m by extracting an eth root modulo n of f(m),
where f is specific to the exact scheme which is used (typically f is a combination of some hash-
function(s) and some redundancy function(s)). The verifier checks that σe mod n = f(m). If the
equality holds, σ is accepted; otherwise, it is rejected.

If the verifier has only a small computation capability, he may want to be aided when checking
the equality. So let us suppose that he has access to a more powerful, but untrusted server or,
equivalently, to a trusted server via a non authenticated communication link. (If the server and the
communication link were both trusted, then the verifier would just ask the server for the verification
of σe mod n = f(m) and the server would reply with OK or NOK). For instance, the verifier may
think of the two following possibilities:

– Ask the server to compute the value Y = σ
e−1
2 mod n. Then, the server returns the value Y

and the verifier finally checks if f(m) = Y 2σ mod n.
– If the value e = e1×e2, with e1 < e2, then ask the server for the computation of Y = σe2 mod n

so that the verifier only has to check if f(m) = Y e1 mod n.

For each of these protocols, even if it deviates from its assigned part, the server cannot fool the
verifier as long as it does not collude with the (legitimate or not) prover. Indeed, given n, m and σ,
finding Y such that the final verification equation is satisfied requires the ability to extract (square
or eth

1 ) roots mod n.
Now, what about a possible collusion between a cheating prover and the server? In the first

protocol, an illegitimate prover and the server can easily collaborate in order to let the verifier accept
a fake signature: the cheater can choose randomly 0 < Ỹ < n and computes σ̃ = f(m)Ỹ −2 mod n.
The cheater first provides the value σ̃, and then asks the server to answer with the value Ỹ .
Obviously, σ̃ and Ỹ fulfill Ỹ 2σ̃ = f(m) mod n and, as a consequence, the signature is accepted.
Since the solution to be chosen must at least resist a collusion between the server and an illegitimate
prover (which in practice, may be represented by the same entity), this implies that this first protocol
cannot be used.

Fortunately, this attack does not apply to the second protocol. Indeed, it remains secure against
a coalition between a cheating prover and the server since finding the right value of Y given n and
m requires to be able to extract an eth

1 root modulo n.
Nevertheless, a more subtle attack remains possible if the legitimate prover and the server

collaborate. Instead of providing the verifier with the right signature σ, the legitimate prover may
send a value σ̃, correlated to σ in a way known by the server (e.g. by adding it to a random value).
Later, when the verifier wants to check the signature, he sends a request to the server. The latter
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reconstructs σ from n, m and σ̃, which allows him to reply with the right value Y . The verifier is
satisfied and stores the pair (m,σ̃). Unfortunately, the stored signature is wrong and the legitimate
prover can easily repudiate it. Here, the point is that the verifier does not check in any way the
consistency between σ̃ and Y .

This leads us to distinguish, in the model that we propose, two kinds of deviating provers: on one
hand the cheaters (who do not know the signature private key); on the other hand the legitimate
provers (who misbehave in order to make some kind of repudiation possible).

Note however that the latter attack may be of very little significance in the case of an authen-
tication protocol or more generally when non-repudiation property is not required.

2.2 Definitions

In this subsection, we formalize the server-aided verification concept. We deliberately restrict our
model to the situation in which the modification of the basic protocol does not impact prover’s view
of the initial protocol. Indeed, the prover should not matter whether verification is server-aided or
not. Of course, such an assumption does not prevent the prover from playing himself the role of
the server if both parties find convenient to do so.

We also assume for simplicity that verification in the initial protocol consists in checking a
predicate at the end of the protocol. Most of the protocols we are aware work that way, or can be
replaced by equivalent protocols which work that way. First, we precisely define the different types
of provers we consider.

Definition 1 (Legitimate/Misbehaving/Cheating). Let π be an interactive proof of knowl-
edge between a (so-called) prover P and a (so-called) verifier V. As usual, we denote by P̃ a prover
which deviates from the protocol. The (non-deviating) prover P is said legitimate, while P̃ is:

cheating if he does not hold the knowledge he claims to hold (and we denote him P̃1);
misbehaving if he holds this knowledge (and we denote him P̃2).

We model the prover P, the verifier V and the server S with polynomial probabilistic Turing
machines (PPTM) with respective random tapes ωP , ωV and ωS . We also consider that the verifier
owns an additional tape denoted ω′V on which precomputed values can be written. The computa-
tional cost of the verifier is defined as the number of steps performed by the Turing machine V.
In practical examples, our computation unit is the n-bit modular multiplication, which is a O(n2)
operation if using a standard algorithm to make it.

We now give the definition of a SAV protocol taking into account an optional property.

Definition 2 (SAV protocol). Let π be an interactive proof of knowledge between a prover P
and a verifier V, with a common input I of size |I|, and which halts by verifying a predicate Eπ

(we denote Eπ = 1 if the predicate is satisfied, Eπ = 0 if not). Let π-cost denote the computational
cost of V during the execution of π.

Let π∗ be an interactive protocol between the prover P, the verifier V and a server S, equal to the
composition of two protocols π− and π′ such that:

– the protocol π− is equal to the protocol π without the verification of Eπ;
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– the protocol π′ is an interactive protocol between V and S;
– V finally accepts (π∗-accepts) or rejects (π∗-rejects) I by verifying a final predicate Eπ∗ (we

denote Eπ∗ = 1 if the predicate is satisfied, Eπ∗ = 0 if not).

Let π∗-cost denote the computational cost of V during the execution of π∗.
The protocol π∗ is said to be a server-aided verification (SAV) protocol for π if:

1. (auxiliary completeness)
– ∀I, Pr

ωS ,ωV
(V π∗-accepts I | Eπ = 0) is negligible in |I|.

– ∀I, Pr
ωS ,ωV

(V π∗-rejects I | Eπ = 1) is negligible in |I|.

2. (auxiliary soundness) ∀I, ∀P̃1, ∀S̃, Pr
ωP̃1

,ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) is negligible in |I|.

3. (computational gain) The computational cost π∗-cost is strictly less than π-cost.

If non-repudiation is required, π∗ must also verify:

(auxiliary non-repudiation) ∀I, ∀P̃2, ∀S̃, Pr
ωP̃1

,ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) is negligible in |I|.

Remark 1. From the definition, proving the auxiliary non-repudiation also proves the auxiliary
soundness which also proves the first condition of the auxiliary completeness.

2.3 Achieving the auxiliary soundness

We currently distinguish two ways to achieve the auxiliary soundness.

Final predicate hard to know. The final predicate Eπ∗ is constructed from the predicate Eπ

by (secretly) randomizing it, so that only the verifier knows it. As a consequence, if the prover is
a cheater P̃1 (and the predicate Eπ is false), there is no way for the server S̃ to fool the verifier,
even if colluding with P̃1. The better strategy consists in guessing the randomizing parameter(s),
the probability of which can be easily controlled by choosing the adequate size. Moreover, this case
can be subdivided into two sub-cases:

– Unconditionally unknown predicate: even with unlimited resources, an enemy has no better
strategy to retrieve the final predicate than guessing it.

– Computationally unknown predicate: it is computationally hard for the enemy to retrieve the
final predicate.

Final predicate hard to solve. The final predicate Eπ∗ is constructed from Eπ such that the
final predicate is computationally hard to solve. As a consequence, if the prover is a cheater P̃1

(and the predicate Eπ is false), there is no feasible way for the server S̃ to fool the verifier, even if
colluding with P̃1. Note that the hard problem used in Eπ∗ is necessarily easier than (i.e. can be
reduced to) the one used in Eπ, since auxiliary completeness implies that a solution for the initial
predicate can be turned into a solution for the final one.

5



2.4 Achieving the auxiliary non-repudiation.

A SAV protocol based on an unconditionally unknown predicate verifies the auxiliary non-repudiation
since the security is unconditional (even w.r.t. P̃2).

In the case of a SAV protocol π∗ based on a hard-to-solve predicate, if the hard-computational
problem used for π∗ can be broken using the private key involved in the basic protocol π, then a
misbehaving prover can obviously break the SAV protocol so that the auxiliary non-repudiation is
not verified.

2.5 Security model in the case of signature scheme

To prove that the auxiliary soundness (respectively the auxiliary non-repudiation) of a protocol π∗,
we assume that S̃ communicates with P̃1 (respectively P̃2). In the case of signature schemes, to
make a message m and an invalid signature σ̃ be π∗-accepted, as in classical proofs [10] of signature
scheme, we distinguish different type of attacks. Thus, we assume that P̃1 (respectively P̃2):

(No message attack) has no access to valid signatures.
(Known message attack) obtains a set of valid signatures associated to a given set of messages.
(Generic message attack) obtains a set of valid signatures associated to a set of messages of his

choice, before knowing the public key.
(Directed chosen message attack) obtains the set of valid signatures associated to a set of

messages of his choice, before knowing the public key.
(Adaptive chosen message attack) obtains valid signatures for messages of his choice, after

knowing the public key.

In all these attacks, the message m, on which P̃ sends an invalid signature σ̃, does not belong
to the set of messages for which a valid signature is known.

3 SAV Protocols for Identification Schemes

In this section we apply our model to two formerly suggested methods to delegate computations
during the verification step. The first one is a generic method proposed by Lim and Lee [14] and
applicable to many discrete-logarithm-based schemes. The second one is a modification by Girault
and Quisquater [9] of the GPS scheme, which is particularly interesting in the so-called RSA-like
version of GPS, as proposed by Girault and Paillès [7]. We prove that these two solutions are both
SAV protocols in the sense of section 2.2.

3.1 An Unconditionally-Unknown-Predicate-Based SAV Protocol

At Eurocrypt’95, Lim and Lee suggested a general method to delegate computations during the
verification step of discrete-logarithm-based schemes (signature and identification) [14]. In this
paper, the computations are not delegated to any server, but to the prover himself. Our approach
is more general but their results can be easily adapted to it. To validate (or not) their generic
method, we analyze it when applied to the Schnorr identification scheme; the results presented
below remain valid for the Schnorr signature scheme.
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The Lim-Lee protocol. In the Schnorr identification scheme, a prover owns a private key s and
a public key (g, p, q, v) such that g is of prime order q modulo a prime integer p and v = g−s mod p
(generally, g, p and q are system parameters). The Lim-Lee protocol is described in Fig. 1. In
particular, it requires the precomputations of two values Z and k−1 mod q.

Prover Verifier Server

k ∈ [[0, 2t[[, k−1 mod q
K ∈ [[0, q[[, Z = g−K mod p

r ∈ [[0, q[[

W = gr mod p
W−−−−−→
c←−−−− c ∈ [[0, 2t[[

y = r + sc mod q
y−−−−→

check y ∈ [[0, q[[
do not check gyvc = W mod p

u = k−1(y + K) mod q
g,u,p−−−−−−−→

Y←−−−−− Y = gu mod p

check Y kZvc = W mod p

Fig. 1. The Lim-Lee modification of the Schnorr identification scheme

Theorem 1. Let I be a public key (g, p, q, v) and t the security parameter for the Schnorr scheme.
The Lim-Lee protocol is a SAV protocol for the Schnorr Scheme if |q| > t and log2 |I| = o(t).

Proof. Let Eπ and Eπ∗ denote respectively the verification of
(
y ∈ [[0, q[[ and gyvc = W mod p

)
and(

y ∈ [[0, q[[ and Y kZvc = W mod p
)
.

Auxiliary completeness. In the Lim-Lee method, (Eπ = 1) ⇐⇒ (Eπ∗ = 1) stands so that Pr
ωS ,ωV

(V
π∗-accepts I | Eπ = 0)= 0 and Pr

ωS ,ωV
(V π∗-rejects I | Eπ = 1)= 0.

Auxiliary soundness. We assume Eπ = 0. From the given values u and y such that u =
k−1(y + K) mod q, with k ∈ [[0, 2t[[ and K ∈ [[0, q[[, the entropy over k, in the sense of the Shannon
theory, is then exactly equal to t so that k is unconditionally unknown. Since only one value k
satisfies the final equation Eπ∗ , the probability that V π∗-accepts is equal to to 2−t (the probability
of guessing the right k). This probability is negligible if log2 |I| = o(t).

Computational gain. In section 2.2, we assumed that the Turing machine associated to the verifier
owns an additional tape to store precomputed values so that, when considering the computational
cost of the verifier, these precomputed values are not taken into account.

Remark 2. As described in [25], by using an extension of the square and multiply algorithm with
the precomputed value gv, the computation of gyvc mod p, with |y| = l, |c| = t requires on average
1.5l + 0.25t modular multiplications.

In the Schnorr scheme, since |y| = |q| and |c| = |k| = t, π-cost is equal to 1.5|q| + 0.25t modular
multiplications. In the Lim-Lee protocol, computing Y kvc requires 1.75t modular multiplications
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and multiplying by Z requires one more, i.e π∗-cost is equal to 1.75t + 1 modular multiplications.
If we omit the negligible cost of the modular multiplication k−1(y + K) mod q, the difference of
computational costs, given by 1.5(|q| − t)− 1, is greater than 0 if |q| > t.

Auxiliary non-repudiation. As the security of the SAV relies on the perfect privacy of k, i.e the
unconditional security of the transformation over y, even the misbehaving prover has no advantage
over a cheater to determine this value k. ut

Example 1. Typically, q is a 160-bit number and t is equal to 32. Thus, the Lim-Lee protocol
decreases by around 75% the computational cost of the verifier.

Remark 3. If, for one reason or another, the size of q is significantly larger than 160 bits, we can also
design a SAV protocol based on a computationally unknown predicate. The verifier precomputes
h = gK mod p with K typically a 160-bit number; the server computes Y = hy mod p and the
verifier finally checks if Y = (Wv−c)K mod p. This SAV protocol does not verify the auxiliary
non-repudiation.

3.2 A Hard-to-Solve-Predicate-Based SAV Protocol

The protocol. The RSA-like GPS identification scheme was presented by Girault and Paillès at
WCC’03 [7]. It is a variant of the GPS identification scheme [6, 22], based on the intractability of the
RSA problem. In this scheme, a prover P owns a public key (n,g,f ,e) and a private key s such that
e is a prime integer and es = 1 mod φ(n), f = g−s mod n and, as a consequence, g = f−e mod n.

In the same paper [7], Girault and Paillès suggest a method to delegate to a server some
computations of the verification step. This protocol, called server-aided RSA-like GPS identification
scheme, is described in Fig. 2. This method is essentially the same as the one proposed by Girault
and Quisquater at Eurocrypt 2002 rump session and applied to the basic GPS identification scheme;
it can be found in [8].

Prover Verifier Server

r ∈ [[0, 2R[[

W = gr mod n
W−−−−−→
c←−−−− c ∈ [[0, e[[

y = r + sc
y−−−−→

Check y ∈ [[0, 2R + en[[

do not check gyfc = W mod n
f,y,n−−−−−−−→

Y←−−−−− Y = f−y mod n
check Y ∈]]0, n[[
check Y efc = W mod n

Fig. 2. The server-aided RSA-like GPS identification scheme

In the following, we denote π the RSA-like GPS identification scheme and π∗ the server-aided
RSA-like GPS identification scheme.

8



Theorem 2. Let I be a public key (n,g,f ,e) for π. Under the intractability of the RSA problem,
π∗ is a SAV protocol for π if log2 |I| = o(log2 e).

Proof. We denote Eπ and Eπ∗ the respective verification of equations of
(
y ∈ [[0, 2R + en[[ and

gyf c = W mod n
)

and
(
y ∈ [[0, 2R + en[[ and Y ∈]]0, n[[ and Y ef c = W mod n

)
.

Auxiliary completeness. (Eπ = 1) ⇐⇒ (Eπ∗ = 1) stands so that, using the same argument as in
the proof of the Lim-Lee protocol, the auxiliary completeness is verified.

Auxiliary soundness. We assume Eπ = 0. The proof relies on the following lemma.

Lemma 1. Assuming Eπ = 0, if I is π∗-accepted with a probability greater than ε′ = 1
e + ε, then,

an eth root of the public key f can be computed in time less than 4τ/ε′, with a probability greater
than ε2

6(ε′)2 , τ denoting the average running time of π∗.

Proof. Assuming Eπ = 0, with a classical consideration (see e.g [12]), the probability of success in
π∗ is at least 1/e. This probability is negligible in |I| if log2 |I| = o(log2 e). Let us assume that

Pr
ωP̃1

,ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) ≥ 1/e + ε = ε′.

In appendix A, we describe an algorithm which returns, in time less than 4τ/ε′ and with a proba-
bility greater than ε2

6ε′2 , two triplets (W ,c1,Y1) and (W ,c2,Y2) with c1 6= c2, Y1 6= 0 and Y2 6= 0.
These two triplets verify Y e

1 f c1 = Y e
2 f c2 mod n. Without loss of generality, we assume that

c2 > c1 so that 0 < c2 − c1 < e. Since e is a prime integer, gcd(e, c2 − c1) = 1, so that there exist
two integers a and b such that a× e + b× (c2− c1) = 1. Then, we obtain f =

(
fa(Y1/Y2)b

)e mod n
so that fa(Y1/Y2)b mod n is an eth root of the public key f . ut

Computational gain. Let l denote the binary size of y; using Remark 2, the computation cost of
the verifier in π∗ is equal to 1.75|e| whereas in π, it is equal to 1.5l + 0.25|e|. Due to the absence of
modular reduction in y, the difference of computational costs, given by 1.5(l−|e|), is greater than 0.

Auxiliary non-repudiation. A misbehaving prover P̃2 involved in π∗ knows the inverse s of
e modulo φ(n). Thus, for this prover, solving the RSA problem is easy, and the auxiliary non-
repudiation cannot be verified. ut

Example 2. Typically, n is a 1024-bit number, e is a 32-bit number and s is a 1024-bit number.
No modular reduction is required so that y is around a 1050-bit number. Using the server-aided
RSA-like GPS scheme, the computational cost of the verifier is decreased by around 95%.

Remark 4. Two other SAV protocols for GPS family can be considered; the first one verifies the
auxiliary non-repudiation and is in the Lim-Lee article [14]; the second one is the same as in Remark
3.

4 First SAV Protocols for Pairing-Based Schemes

In this part, we present a generic SAV protocol applicable to several signature schemes based on
bilinear maps (or pairings): in particular, the ZSNS signature scheme from Zhang, Safavi-Naini and
Susilo [29] and the Boneh-Boyen signature schemes [3] (it also applies on the identification scheme
from Shao, Lu and Cao [27] which is constructed from one of the Boneh-Boyen signature schemes).
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4.1 The Generic SAV Protocol

We assume the existence of a bilinear map e : G×G → G1. The groups G and G1 are cyclic groups
of prime order p and e(g, g) 6= 1.

The method applies on schemes in which the verifier checks if e
(
σ, f(I,m, r)

)
= e(g, g), such

that f is a public function specific to the scheme, I the public parameters including the public key,
(r,sigma) defines the signature of a message. Depending of the scheme, r exists or not.

The basic idea of our generic SAV protocol is to delegate the (expensive) pairing execution to
the server, the verifier being left with two (relatively much faster) exponentiations, one of them
being precomputable. On the whole, it consists in first executing the signature scheme and, instead
of verifying the equation e

(
σ, f(I,m, r)

)
= e(g, g), in running the following protocol with a server.

1. The verifier randomly picks an integer t ∈ [[0, p[[, and precomputes e(g, g)t.
2. After receiving a message and its signature, the verifier computes the value α =

(
f(I,m, r)

)t
and sends it with σ to the server.

3. The server computes the value β = e(σ, α) and sends it back to the verifier.
4. The verifier finally checks if β = e(g, g)t.

Auxiliary completeness. The equivalence e
(
σ, f(I,m, r)

)
= e(g, g) ⇐⇒ e(σ, α) = e(g, g)t stands

and using the same argument as in the proof of the Lim-Lee protocol, the auxiliary completeness
is verified.

Auxiliary non-repudiation. Our SAV construction allows the misbehaving prover P̃2 to send
any value σ̃. Then, during the computation of β, P̃2 transmit the right value σ to S̃ so that I is
finally π∗-accepted. The hard computational problem involved in the SAV protocol can be easily
solved using the private key of the basic protocol. The auxiliary non-repudiation cannot be verified.

4.2 Application to the ZSNS Signature Scheme

In the ZSNS scheme [29], the signer owns public parameters
(
g,p,e(g, g)

)
, a public key U and a

private key x such that U = gx. To sign a message m, the signer computes the signature σ = 1
H(m)+x ,

with H a hash function from {0, 1}∗ into [[0, p[[. The verifier accepts the signature if e(σ, gH(m)U) =
e(g, g) (in the generic description, f(I,m, r) corresponds to gH(m)U). This scheme is secure against
an adaptive chosen message attack in the random oracle model, under the intractability of the
k-CAA problem introduced by Mitsunari et al. [16]:

given g, gx, h0, h1 . . . , hk (hi all different), g
1

h1+x ,. . . , g
1

hk+x , output g
1

h0+x .

We define the k-Bilinear CAA problem (k-BCAA) as follows:

given g, gx, h0,. . . , hk (hi all different), g
1

h1+x ,. . . , g
1

hk+x , output e(g, g)
1

h0+x .

In appendix B, we prove this problem is harder than the (k+1)-Bilinear Diffie Hellman Inversion
problem

(
(k + 1)-BDHI

)
introduced by Boneh and Boyen in [2].

Let π denote the ZSNS signature scheme, π∗ the generic protocol presented in section 4.1 applied
to π, Eπ the verification of the equation e(σ, gH(m)U) = e(g, g) and Eπ∗ the verification of equation
β = e(g, g)t.
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Theorem 3. The protocol π∗ is a SAV protocol for π, secure against adaptive chosen message
attacks in the random oracle model under the intractability of the k-BCAA problem.

Proof. The auxiliary completeness is already proved in section 4.1.
Auxiliary soundness. Using the model of security of section 2.5, it relies on the following lemma.

Lemma 2. (With the above notations) Assuming Eπ = 0, if the server S̃, communicating with a
cheater P̃1 which asks qH queries to the hash oracle and qS (< qH) queries to the signing oracle,
makes I be π∗-accepted with a probability greater than ε, then the q-BCAA problem, q ≥ qH +qS−1,
can be solved with a probability of success greater than (1−ε′)ε

qH
and in time O(τ); with τ denoting

the average running time of π∗ and ε′ the probability of success of a qS adaptive chosen message
attack against the ZSNS signature scheme.

Let us consider the following random instance of the q-BCAA problem: given g, gx, h0, h1,. . . ,

hq (hi all different), g
1

h1+x ,. . . , g
1

hq+x , output e(g, g)
1

h0+x .

We now construct an algorithm A which interacts with P̃1 and S̃, and which solves the above
instance of the q-BCAA problem. We assume that P̃1 never repeats two same queries to each oracle
but can ask a same query to both oracles.

S1 A prepares a set of answers for the hash oracle: H = {w0, w1, . . . , wqH−1} ⊂
{
h0, h1, . . . hq

}
such that h0 ∈ H. A also establishes a list lH , initially empty, of queries with the corresponding
answered hash value.

S2 When P̃1 makes a hash query mi, for 0 ≤ i ≤ (qH − 1), A answers wi and adds the couple
(mi,wi) in lH . We denote by m̃ the hash query for which the answer is h0. If mi has already
been queried to the signing oracle, there exists a couple (mi,wi) in lH and A answers wi.

S3 A also establishes a set SH , initially empty. When P̃1 makes a signing query mi, two cases are
possible: if mi has already been queried to the hash oracle, there exists a unique couple (mi,wi)

in lH ; if mi = m̃, then A fails, otherwise A answers g
1

wi+x . If mi has not been queried to the
hash oracle, then A randomly chooses hi ∈

{
h0, h1, . . . , hq

}
\
(
H∪SH

)
, answers g

1
hi+x , adds the

couple (mi,hi) in lH and adds hi in SH .
S4 After making all the queries to the oracles, P̃1 outputs a couple (m∗,σ∗). If the message m∗ is not

equal to m̃ and if (m∗,σ∗) is such that Eπ = 0, then A sends to S̃ the value α = gt = g
(h0+x)× t

h0+x

for a random value t ∈ [[0, p[[; otherwise, A fails and then stops.

S5 Finally, S̃ answers a value β. A π∗-accepts the couple (m∗,σ∗) if β = e(g, g)
t

h0+x .

Let nH denote the number of queries first asked to the random oracle and then asked to the
signing oracle. Assuming the hash function behaves like a random oracle, the cheater P̃1 cannot
distinguish the algorithm A from a real attack scenario. Moreover the server S̃ cannot distinguish
the value gt from a value gt′(h0+x) since t is randomly picked in ∈ [[0, p[[. Finally, A ends if :

1. in step S3, the messages queried to the signing oracle are all different from m̃ which occurs with
a probability equal to qH−nH

qH
,

2. in step S4, the message m∗ is equal to m̃ and (m∗,σ∗) is such that Eπ = 0 which occurs with
probability greater than (1− ε′)/(qH − nH),
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3. in step S5, S̃ answers a value β such that βt−1
= e(g, g)

1
h0+x , which happens with a probability

greater than ε.

As a consequence, the probability of success of the algorithm is greater than (1−ε′)ε
qH

.

Computational gain. The hash value H(m) is assumed to be of size |p| so that, using the Remark
2, computing (UgH(m))t requires 1.75|p| modular multiplications which corresponds to the verifier
cost (since e(g, g)t is precomputed).

Remark 5. It is often complained that a pairing evaluation is too computational expensive to be
used in practice. If we consider that such an evaluation is equivalent to the computation of around
4 group exponentiations, then it requires in average 6|p| group multiplications.

Using the above remark, and considering that the computation of Ugh(m) requires 1.5|p| + 1
modular multiplications, we obtain a final cost for the verifier equal to 7.5|p|+ 1 modular multipli-
cations for the basic ZSNS signature scheme. The computation cost in π∗ is obviously less than in
π such that the computational cost of the verifier is decreased by around 70%. ut

5 Conclusion

We have first formalized the concept of a server-aided verification (SAV) protocol, and introduced
three properties for such a protocol. Two of them, called auxiliary completeness and auxiliary
soundness, are mandatory, while the third one, called auxiliary non-repudiation, must be satisfied
only when non-repudiation is required.

In a second time, we have analyzed in this new model two already existing SAV protocols,
which both happen to reach the mandatory properties. The first one, proposed by Lim and Lee
[14], verifies the auxiliary non-repudiation at the price of requiring the verifier to precompute some
values. The second one, initially suggested by Girault and Quisquater [9], is easy to plug into
protocols of GPS family, but do not achieve the optional property.

Finally, we have presented a generic SAV protocol for pairing-based schemes, applicable in
particular to the Zhang et al. [29] and the Boneh-Boyen [3] signature schemes. Our new method
consists in making the server perform the heaviest computation, namely the pairing evaluation,
so that the scheme becomes almost as efficient as a ”classical” discrete-logarithm-based signature
scheme. But since only the mandatory properties are satisfied, it remains an open problem to find
SAV protocols for pairing-based schemes which verify the auxiliary non-repudiation. The Fig. 3
compares the two main characteristics of the different protocols considered in this article.

SAV protocol Auxiliary non-repudiation Computational gain

The Lim-Lee method yes 85%

Server-aided RSA-like GPS scheme no 95%

Our generic SAV protocol no 70%

Fig. 3. The different SAV protocols of this article
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A Algorithm from Lemma 1

Let us consider the following algorithm, constructed from [26].

i := 0
do i = i + 1

Choose a random tape ωP̃1
and compute W

Send P̃1 a random c1 in [[0, e[[
Obtain from P̃1 the answer y1 and check Eπ

Ask the server S̃ the computation of Y1

until
(
(Eπ = 0) and (Y e

1 vc1 = W )
)

j := 0
do j = j + 1

Send P̃1 a random c2 6= c1 in [[0, e[[
Obtain from P̃1 the answer y2 and check Eπ

Ask the server S̃ the computation of Y2

until
((

(Eπ = 0) and (Y e
2 vc2 = W )

)
or (i == j)

)
if
(
(Eπ = 0) and (Y e

2 vc2 = W )
)

then return (W ,c1,Y1) and (W ,c2,Y2)
else return FAIL.

To analyze this algorithm, we first recall a well-known probabilistic lemma (see [21] for the
proof).
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Lemma 3. Let A be an event defined on X × Y such that Pr
x,y

(
A(x, y)

)
≥ ε and let Ω =

{
a ∈ X;

Pr
x,y

(
A(x, y)

)
≥ ε− α

}
, then: Pr

x
(x ∈ Ω) ≥ α and Pr

x

(
x ∈ Ω|A(x, y)

)
≥ α/ε.

We assume Pr
ωP̃1

,ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) ≥ 1/e + ε = ε′. Let Ω be the set of random tapes

ωP̃1
such that Pr

ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) = 1/e + ε/2.

Let us now consider the probability of success of this algorithm. Since the GPS RSA-like identifi-
cation scheme is sound, the probability of success (i.e Eπ = 1) of a cheater P̃1 is less of equal to 1/e
so that the probability that (Eπ = 0) is great or equal than (1− 1/e).

The probability of success of the first loop is, by definition of S̃ and P̃1, greater than (1−1/e)ε′;
and for any integer N , i is equal to N with a probability equal to ε′(1−1/e)× (1−ε′(1−1/e))N−1.

The probability that the first loop succeeds with a random tape ωP̃1
lies in Ω is greater than

ε/(2× ε′) (using lemma 3).
If ωP̃1

in Ω, the second loop ends with (Eπ = 0) and (Y e
2 vc2 = W ) with a probability greater

than ε/2(1 − 1/e); otherwise, Pr
ωP̃1

,ωV ,ωS̃
(V π∗-accepts I | Eπ = 0) ≤ ε′. Thus, finding this second

value c2 before j = N occurs with a probability greater than 1 −
(
1 − ε/2(1 − 1/e)

)N . Then, the
full probability of success of the algorithm is:

+∞∑
i=1

ε′(1− 1
e
)
(
1− ε′(1− 1

e
)
)i−1

× ε

2ε′
×

(
1−

(
1− ε

2
(1− 1

e
)
)i
)

which can be rewritten as :

ε

2
(1− 1

e
)

(
+∞∑
i=0

(
1− ε′(1− 1

e
)
)i
− (1− ε

2
(1− 1

e
))

+∞∑
i=0

(
(1− ε′(1− 1

e
))(1− ε

2
(1− 1

e
))
)i
)

Using the equality
∑+∞

i=0 xi = 1
1−x , we obtain

ε

2
(1− 1

e
)

(
1

ε′(1− 1
e )
−

(
1− ε

2(1− 1
e )
)

ε′(1− 1
e )
(
(1 + ε

2ε′ )−
ε
2(1− 1

e )
))

=
ε2

4ε′2
(
(1 + ε

2ε′ )−
ε
2(1− 1

e )
)

Since ε′ > ε, we obtain (1 + ε
2ε′ ) −

ε
2(1 − 1

e ) ≤ 1 + ε
2ε′ ≤ (1 + 1

2) ≤ 3/2, so that the algorithm
succeeds with a probability greater than ε2

6ε′2 . The running time of the algorithm is 2τ
(1−1/e)ε′ ≤

4τ
ε′

with τ the average running time of the SAV protocol.

B k-BCAA is a Stronger Problem than (k + 1)-BDHI

We recall that the k-BCAA problem is defined by:

given g, gx, h0, h1,. . . , hk (hi all different), g
1

h1+x ,. . . , g
1

hk+x , output e(g, g)
1

h0+x .
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The (k + 1)-BDHI problem from [2] is defined by:

given f , fy, fy2
,. . . , fyk+1

; output e(f, f)
1
y .

We assume there exists an algorithm which solves the k-BCAA problem and we consider the
following given input for the (k + 1)-BDHI problem: f , fy, fy2

,. . . , fyk+1
for a non zero y.

First, we need to construct a valid input for the k-BCAA problem. Let Ai denote fyi ∀i ∈
[[0, k + 1]] and let Bi denote e(f, f)yi ∀i ∈ [[0, 2k − 1]].

Construction of the input of the k-BCAA problem. The method used here is inspired by
Mitsunari et al. [16]. Let h0, h1,. . . , hk be k+1 distinct random values in [[0, q[[ and let P (Y ) be the
polynomial given by

∏k
i=1(Y − h0 + hi). This polynomial is of degree k in Y and can be expanded

into P (Y ) =
∑k

i=0 αiY
i.

Let g be the value fP (y) which is obtained by computing
∏k

i=0(Ai)αi and let PK be the value
g−h0

∏k
i=0(Ai+1)αi which is also equal to gy−h0 .

Moreover, ∀j ∈ [[1, k]], let Pj(Y ) be the polynomial given by
∏k

i=1;i6=j(Y − h0 + hi), so that
(Y − h0 + hj)Pj(Y ) = P (Y ); each Pj(Y ) can be expanded into

∑k−1
i=0 βj

i Y
i. Then, ∀j ∈ [[1, k]], we

denote by Sj the value
∏k−1

i=0 (Ai)βj
i which is equal to fPj(y) = fP (y)/(y−h0+hj) = g1/(y−h0+hj).

If we finally denote x = y − h0, we then obtain h0, h1,. . . , hk, g, PK = gx, S1 = g1/(x+h1),. . . ,
Sk = g1/(x+hk) so that we have constructed a valid input for the algorithm solving the k-BCAA
problem: we obtain the solution e(g, g)1/(x+h0) for the current instance of the k-BCAA problem.

Recovering the solution of the (k + 1)-BDHI. The output value of the k-BCAA problem
e(g, g)1/(x+h0) is equal, by definition, to e(g, g)1/y and more precisely, to e(f, f)P 2(y)/y (we have
assumed y is a non zero value).

Let P ′(Y ) be the rational fraction P 2(Y )/Y which can be written as γ−1

Y +
∑2k−1

i=0 γiY
i; γ−1 is

a non zero value equal to
∏k

i=1(hi − h0). Thus,

e(g, g)1/(x+h0) = e(f, f)P 2(y)/y = e(f, f)
γ−1

y
+
P2k−1

i=0 γiy
i

= e(f, f)
γ−1

y
∏2k−1

i=0 Bγi
i .

As a consequence, we obtain:

e(f, f)
1
y =

(
e(g, g)1/(x+h0)

∏2k−1
i=0 B−γi

i

)γ −1
−1

16


