
A Practical Attack on the Fixed RC4 in the
WEP Mode

Itsik Mantin

NDS Technologies, Israel
imantin@nds.com

Abstract. In this paper we revisit a known but ignored weakness of
the RC4 keystream generator, where secret state info leaks to the gen-
erated keystream, and show that this leakage, also known as Jenkins’
correlation or the RC4 glimpse, can be used to attack RC4 in several
modes. Our main result is a practical key recovery attack on RC4 when
an IV modifier is concatenated to the beginning of a secret root key to
generate a session key. As opposed to the WEP attack from [FMS01] the
new attack is applicable even in the case where the first 256 bytes of the
keystream are thrown and its complexity grows only linearly with the
length of the key. In an exemplifying parameter setting the attack recov-
ers a 16-byte key in 248 steps using 217 short keystreams generated from
different chosen IVs. A second attacked mode is when the IV succeeds
the secret root key. We mount a key recovery attack that recovers the
secret root key by analyzing a single word from 222 keystreams generated
from different IVs, improving the attack from [FMS01] on this mode. A
third result is an attack on RC4 that is applicable when the attacker can
inject faults to the execution of RC4. The attacker derives the internal
state and the secret key by analyzing 214 faulted keystreams generated
from this key.

Keywords: RC4, Stream ciphers, Cryptanalysis, Fault analysis, Side-
channel attacks, Related IV attacks, Related key attacks.

1 Introduction

RC4 is the most widely used stream cipher in software applications. Among
numerous applications it is used to protect Internet traffic as part of the SSL
and is integrated into Microsoft Windows. It was designed by Ron Rivest in 1987
and kept as a trade secret until it leaked out in 1994. RC4 has a secret internal
state which is a permutation of all the N = 2n possible n bits words, associated
with two indices in it, when in practical applications n = 8, and thus RC4 has
a huge state of log2(28! × (28)2) ≈ 1700 bits.

In this paper we revisit a known but previously ignored property of RC4,
which we denote as the Glimpse property also known as Jenkins’ correlations.
The glimpse is a leakage of information from RC4 secret state to the generated
keystream, where every keystream word hints on a state word through the cor-
relation S[j] = i − z which occurs with doubled probability (1/128 instead of

1/256), when i is a known index of RC4 state, z is the hinting keystream word
and S[j] is the hinted entry of the secret internal state.

The glimpse property was first mentioned in the web page of Jenkins ([Jen96])
and was first brought to formal literature in [MS01] in 2001. In Chapter 7 of
[Man01] Mantin analyzed the glimpse property, defined a generalized version
of the correlation and discovered small biases in the keystream that stem from
it. However, due to the fact that the glimpse discovers a negligible part of the
internal state (one byte out of 1700) and the fact that it does so with biased
but still small probability, that was the last trial for exploiting this property to
attack RC4.

In this paper we revisit the glimpse in RC4 and RC4-like stream ciphers,
analyze its origin and discuss the ways a cryptanalyst can use it. We define a
generalized version of the glimpse and discuss the availability of the generalized
correlations in RC4 and RC4-like ciphers.

Our main result is a practical key recovery attack on RC4 that works even
when the common recommendation of throwing a 256-byte prefix of the keystream
is adopted. The attack works in a mode of operation where an initial value (IV)
is concatenated to the beginning of the root key and works in both the chosen IV
and known IV models. The attack allows some data-time tradeoff that depends
on the length of the root key. For example, some parameter setting for a 16-byte
key allows the attacker to recover the key in 248 steps using 217 data or with
232 steps using 220 data. In the known (random) IV model the data complexity
of the attack requires an additional multiplicative factor of N = 256 in order to
have a sufficient number of “good” IVs.

In the second part of the work we present the fork model where many in-
stances of RC4 are available to the attacker with almost equal state and show
that in this model an attacker can use the glimpse property to recover RC4 in-
ternal state. We show two realizations of this model; the first is where the IV
modifier is concatenated to a end of a secret root key in order to generate many
independent RC4 keystreams from a single secret root key. In this mode we
mount a chosen and known (random) IV attacks that recover the secret key by
analyzing 222 keystreams that were generated from this key and different IVs.
Another realization of this model is where the attacker injects faults into the
execution of RC4 and distorts the generated keystream. In that case we mount
a fault attack that uses 214 faulty keystreams to recover the internal state and
the secret key.

The rest of the paper is organized in the following way: In Sect. 2 we describe
RC4 and previous cryptanalysis. In Sect. 3 we re-present the glimpse property
and analyze its origin and availability. In Sect. 4 we describe key recovery attacks
on RC4 in the preceding IV mode when the first 256 bytes are thrown. In Sect.
5 we present the Fork model and use the glimpse property to mount an attack
on RC4 in this model. In Sect. 6 we adjust the fork model attack to mount a key
recovery attack on the succeeding IV mode. In Sect. 7 we adjust the fork model
attack to mount an efficient fault attack on RC4. We summarize our work in
Sect. 8.

2 RC4 and Its Security

2.1 Description of RC4

RC4 consists of 2 parts (described in Fig. 1): A key scheduling algorithm KSA
which turns a variable-size key (with typical size of 5-32 bytes) into an initial
permutation S of {0, . . . , N − 1}, and an output generation part PRGA which
uses this permutation to generate a pseudo-random keystream.

The PRGA initializes two indices i and j to 0, and then loops over four
simple operations which increment i as a counter, increment j pseudo randomly,
exchange the two values of S pointed to by i and j, and output the value of S
pointed to by S[i] + S[j]1.

KSA(K[0 . . . � − 1])
Initialization:

For i = 0 . . . N − 1
S[i] = i

j = 0
Scrambling:

For i = 0 . . . N − 1
j = j + S[i] + K[i mod �]
Swap(S[i], S[j])

PRGA(K)
Initialization:

i = 0
j = 0
S = KSA(K)

Generation loop:
i = i + 1
j = j + S[i]
Swap(S[i], S[j])
Output z = S[S[i] + S[j]]

Fig. 1. The Key Scheduling Algorithm and the Pseudo-Random Generation Algorithm

2.2 Previous Analysis of RC4

Cryptanalysis of RC4 is divided into two main parts, analysis of the initialization
of RC4 and analysis of the keystream generation. The first part focuses on the
KSA, the PRGA initialization and the integration of both, whereas the last
focuses on the internal state and the round operation of the PRGA.

Due to the simplicity of the initialization part and the major difference be-
tween the typical key sizes and the effective size of RC4 state, this part was
subject to extensive analysis and indeed numerous significant weaknesses were
discovered of many types, including classes of weak keys ([Roo95]), patterns
that appear twice and three times the expected probability (the second byte
bias [MS01]), propagation of key patterns through the KSA to the initial per-
mutation and through the PRGA initialization to the prefix of the stream (the
invariance weakness [FMS01]), related key attacks ([GW00]), statistical biases
in different prefixes of the generated stream ([FMS01] and [PP04]) and analy-
sis of the biased distribution of RC4 initial permutation ([Mir02] and [Man01]).

1 Here and in the rest of the paper all the additions are carried out modulo N

However, the most devastating attack on RC4 was described in [FMS01] where
RC4 was proved to have serious related-key vulnerabilities, exposing several im-
plementations of RC4 to practical key recovery attacks, where the effected im-
plementations are those that employ trivial key-IV combination methods such as
concatenation or exclusive-or. A subsequent work by Stubblefield et-al ([SIR01])
implemented the attack on the security protocols of the international standard
for wireless LAN communication 802.11b (WEP) that used RC4 in the IV con-
catenation mode, and these protocols were declared as broken.

This attack had a great impact on the trust of cryptographers and secu-
rity designers in RC4 and the common practice for using RC4 today includes
hardening of the initialization process by omitting some prefix of the keystream,
usually 256 bytes as recommended by RSA laboratories in [RSA01]. This hard-
ening neutralizes most of the attacks and weaknesses that were discovered in
RC4 initialization. However, this mode still has some weaknesses, including a
biased distribution of the PRGA initial permutation ([Mir02]) and statistical
biases in the first bytes that are emitted after the 256th round ([PP04]).

Statistical analysis of the keystream generation part gave rise to several weak-
nesses and biased patterns in RC4 keystreams. Golić ([Gol97]) and Fluhrer and
McGrew ([FM00]) designed distinguishers of RC4 streams from random streams
that require 244.7 and 230.6 keystream words respectively. Subsequently Mantin
improved these results in [Man05] and designed a 228 distinguisher. In his paper
he also described several families of patterns denoted in [Man05] as recyclable
patterns, which occur in RC4 keystreams with extremely high probability that
is several times the probability in random streams, and described an algorithm
that uses these patterns to predict in some rare cases bits and full bytes of RC4
with success probabilities that are close to 1.

Several other classes of RC4 partial states were defined and analyzed in
[FM00], [MS01] and [PP03] as such that create unique patterns in the output
stream and allow a viewer of the output stream to recover parts of the inter-
nal state with more than trivial probability (chapter 2 of [Man01] contains an
overview of these classes). The cycles structure of RC4 state progression was
also analyzed in [MT98] and [Fin94], where the last describes short cycles that
are unreachable by RC4. [KM+98], [MT98] and [Gol00] describe state recovery
attacks through backtracking with complexity that is less than the square root
of an exhaustive search over all possible states. However, due to the hugeness of
the state (1700 bits for n = 8), these attacks are completely impractical as they
require more than 2700 steps. Mantin in [Man05] describes an approach that
under some circumstances can improve this attack significantly through using
the recyclable patterns.

Two variants of RC4 were recently proposed, both slightly more complex than
the original RC4 and are claimed to be more secure than it. RC4A ([PP04]) was
designed by Paul and Preneel and works with two RC4 tables. The generation
stage of RC4A is slightly more efficient than RC4’s, but the initialization stage
requires at least twice the effort of RC4 initialization. VMPC ([Zol04]) was de-
signed by Zoltak and includes several changes to the KSA, the IV integration

method, the PRGA initialization, the round operation and the output selection
method. Maximov described in [Max05] distinguishers for both variants, requir-
ing 254 data for VMPC and 258 data for RC4A and Tsunoo et-al subsequently
described in [TS+05] a prefix distinguishers for VMPC and RC4A keystream
generators, requiring 223 keystream prefixes for RC4A and 224 keystream pre-
fixes for VMPC. A regular distinguisher (as opposed to a prefix distinguisher)
of RC4A was shown in [Man05] that needs a keystream of 229 keywords and is
an adjusted variant of the RC4 distinguisher mentioned in this work.

The trend of side-channel attacks had not skipped RC4. Hoch and Shamir
made in [HS04] an exhaustive fault analysis of many stream ciphers including
RC4 and found them all vulnerable to key recovery attack in this model. In par-
ticular their attack on RC4 requires 216 faults. Biham et-al proposed in [BGN05]
two other fault attacks on RC4; in the impossible fault attack is based on using
faults to force the cipher to enter the impossible states known as Finney’s states
([Fin94]). In the differential fault attack, the attacker compares many faulty
keystreams to a non-faulty keystream and identifies the three permutation en-
tries that are used in the first round, the second round, etc. Several variants
and optimizations for this attack are described and the best configuration of the
attack requires 210 faults and key resets.

2.3 Notations

In vast majority of RC4 implementations N = 256 and n = 8. In many cases we
simplify expressions by using numbers instead of parameters. Whenever appro-
priate, we mention this conversion.

For a positive integer X we use the notation [X] to specify the domain
of indices modulo X, i.e., [X] = {0, 1, . . . ,X − 1}. We denote the domain of
permutations of [X] as P[X].

We use the notations it, jt and St for the indices i and j and the permutation
S after round t, where the rounds are indexed in accordance with i, i.e., it = t.
Thus the KSA has rounds 0, . . . , 255 and the PRGA has rounds 1, 2, We use
the same indexing for both the KSA permutations and the PRGA permutations
and whenever there might be a confusion, we use the notations S(KSA) and
S(PRGA) respectively.

The output function Z : P[X]× [X]× [X] → [X] is defined on RC4 states as

Z(S, i, j)
def
= S[S[i] + S[j]]. We denote output words with z and index them in

the same manner as i and j, i.e., zt = Z(St, it, jt).
We denote the KSA key as K and its length as �K .

3 The Glimpse

The glimpse property as was first introduced in [Jen96] is defined in Theorem 1.

Theorem 1 (The Glimpse Main Theorem). Let i ∈ [N]. Then

IPj∈R[N],S∈RP[N][S[j] = i − Z(S, i, j)] ≈ 2/N (1)
IPj∈R[N],S∈RP[N][S[i] = j − Z(S, i, j)] ≈ 2/N (2)

In other words, when z is the output then

IP[S[j] = i − z] ≈ IP[S[i] = j − z] ≈ 2/N

The proof of Theorem 1 appears in the discussion of useful states in Sect. 2.3 of
[Man01], and we only bring the intuition behind one of them (the second stems
from symmetry). In the case where i = S[i] + S[j], the correlation occurs with
probability 1 since

Z(S, i, j) = S[S[i] + S[j]] = S[i] = i − S[j] (3)

In the other case (i �= S[i] + S[j]), the correlation occurs with a probability of
1/N and thus the overall probability is

1/N · 1 + (1 − 1/N) · 1/N ≈ 2/N (4)

A generalized version of the glimpse was proved in Sect. 7 of [Man01], where
different relations between i and z hint on corresponding relations between S[i]
and S[j]. This generalization is given in Theorem 2.

Theorem 2. Let f be a [N] → [N] function and let hf (x)
def
= f(x)+x. Suppose

that hf is on-to-one in the domain [N] and onto [N]. Then for every i ∈ [N],

IPj∈R[N],S∈RP[N][S[j] = f(S[i])|i = hf (Z(S, i, j))] ≈ 2/N (5)

The original glimpse is a special case with the degenerated function f(x)
def
=

i − z and hf (z) = i. The base condition i = hf (Z(S, i, j)) occurs always and
thus the probability of the derived condition [S[j] = f(S[i]) is always 2/N . Thus
many relations between the index i and the output word z imply corresponding
relations between the permutation entries that are used.

In Sect. A of the appendix we discuss the availability of the glimpse and show
that it exists in many other output selection functions. Notice that since the
index j is secret, the output hints on a value in an unknown location. However,
the value in this location was in a known location i immediately before this
round and furthermore, this is the same value that was used to update j in this
round. These facts underline the analysis in the rest of the paper.

4 Attacking the Truncated RC4

One of the most popular IV combination methods for RC4 and other stream
ciphers is a concatenation of the IV to the root key in order to obtain a one-time
session key. This mode of operation was attacked by Fluhrer et-al in [FMS01]
both in the case where the IV is concatenated to the end of the root key (we
denote this mode as the succeeding IV mode) and in the case where the IV
is concatenated to the beginning of the root key (we denote this mode as the
preceding IV mode). Their attack on the preceding IV mode was found applicable

to the RC4 implementation in WEP and it is sometimes referred to as the
WEP attack or the FMS attack. The attack recovers the bytes of the root key
one at a time, where in the iterative step IVs are selected that cause leakage
of information from the target keyword into the first word of the generated
keystream2. Since the publication of this attack in 2001 the common practice in
implementations of RC4 is to throw a prefix of 256 bytes from the keystream and
thus prevent access of the attacker to the first output word and foil the attack.
We denote this usage mode of RC4 as the truncated RC4.

In this section we present a new attack on the truncated RC4. The attack
resembles the FMS attack in many aspects, where instead of using the leakage
of the keyword to the first output word, we use the glimpse property to redirect
the leakage to the 257th keystream word and thus overcome the omission of the
first keystream words.

The rest of this section is organized as follows. We first describe the WEP
attack and the way in which particular keywords leak to the first keystream
word. Afterwards we present a new leakage scenario where keyword info leaks to
the 257th keystream word. We describe how the attack uses this leakage scenario
to recover the root key and end with complexity analysis and a comparison to
the WEP attack.

4.1 The WEP Attack

We denote the root key as RK and the session key that is combined from RK and
an IV as SK. We denote the length of these keys by |RK| and |SK| respectively
and the length of the IV by �IV and thus |SK| = |RK| + �IV .
The attack recovers the keywords one at a time. The iterative step of the attack
assumes knowledge of some prefix of the RC4 keywords, and uses the first word of
each of several keystreams to derive the next keyword (which we denote below
as the target keyword). The attack starts with the known IV as a basis, and
repeatedly applies the iterative step in order to recover all the keywords in the
root key. The keystreams from which first words are taken to recover the target
keyword, are carefully selected according to the IV that was used to generate
them.

The Iterative Step. The iterative step for the (x+1)th keyword SK[x] (which
is RK[x−�IV]) as the target keyword simulates the first x steps of the KSA using
the x known keywords in order to recover the permutation after x rounds Sx−1.
The KSA uses the next keyword, which is the target keyword, to calculate the
value of j in the next step jx and thus this keyword can be easily derived from
jx. Since the swap in round x occurs in locations ix = x and jx, Sx[x] = Sx−1[jx]
and knowing Sx−1, Sx[x] leads to jx and further on to the target keyword.

2 The attack is therefore a Known Plaintext Attack (KPA). Stubblefield et-al subse-
quently showed that the first plaintext byte in typical WEP applications is a constant
header and thus the KPA model is realistic.

The first output value is S[S[1] + S[S[1]]] and thus only three permutation
entries are used for this calculation; the ones in locations 1, S[1] and S[1] +
S[S[1]]. When these locations are lower than or equal to x after round x they
are guaranteed not to be visited by i during the subsequent N − x rounds and
with high probability of more than e−3 ≈ 5% (using Lemma 1, which is proved in
Appendix B) no to be visited by the pseudo-random index j during these rounds.
In that case, the first keystream word can be deduced with high probability
from the values that are at these locations in the permutation Sx. Furthermore,
when in addition S[1] + S[S[1]] = x (in [FMS01] it was denoted as the resolved
condition) the first keystream word z1 is exactly Sx[x], from which the target
keyword can be derived.

Formally, when 1, S[1] < x and S[1] + S[S[1]] = x, then with probability of
at least 5%

SK[x] = jx − jx−1 − Sx−1[x] =

= S−1
x−1[Sx[x]] − jx−1 − Sx−1[x]

w.p. 1/e3

=

= S−1
x−1[z1] − jx−1 − Sx−1[x] (6)

Thus when IVs are selected that cause Sx−1 to satisfy the resolved condition,
the above calculation points to the correct target keyword with probability of
about 5%. Using this observation Fluhrer et-al recovered the target keyword
through employing a simple voting mechanism where every first keystream word
gives a vote to a keyword candidate.

Analysis of the WEP Attack. In [FMS01] it was estimated that in order
to mount the attack for a particular keyword the attacker needs about 60 votes
from which an average number of three votes go to the correct target keyword.
In order to guarantee the 5% probability, these votes must come from situations
where the resolved condition was satisfied and thus in the chosen IV model the
number of IVs that are needed is 60 per keyword.

In the known IV model the situation is more complicated where the attacker
must wait for IVs that lead to the resolved condition, which under reasonable
randomness assumptions have a fraction of x

N2 and thus the (x + 1)th keyword
requires 60N2/x IVs. Since the data can be reused for different iterative steps
the main complexity parameter for the attack is the maximal number of IVs for
a keyword, which is 60 ·N2/�IV . A somewhat surprising result is that the attack
works better when longer IVs are used.

4.2 The New Attack

We present a similar leakage from the target keyword in two stages, to S
(PRGA)
1 [1]

and through it to the 257th keystream word z257.
We first describe the way Sx[x] reaches location 1 of S. Suppose that after

round x− 1 of the KSA we have Sx−1[1] = x. In the next round some arbitrary
value Y , pointed to by j, is swapped into location x. This Y leads to the target

keyword in the same manner as in the WEP attack (known Sx−1, Y leads to jx,
jx leads to SK[x]). Suppose that during the remaining N − x KSA rounds the
values x and Y remain at locations 1 and x. The probability of this event is at
least 1/e2 (using Lemma 1). In the first round of the PRGA round we get

i1 = 1 (7)

j1 = j0 + S
(PRGA)
0 [1] = S(KSA)

x [1] = x (8)

S
(PRGA)
1 [1] = S

(PRGA)
0 [j1] = S(KSA)

x [x] = Y (9)

Thus with probability 1/e2 target keyword info leaks into S
(PRGA)
1 [1]. In the

next 255 rounds of the PRGA i traverses locations 2, . . . , 255, 0 and with prob-
ability 1/e (again we use Lemma 1) the index j also skips location 1 and then
S

(PRGA)
256 [1] = S

(PRGA)
1 [1] = Y . However, the glimpse property causes informa-

tion on this particular byte to leak to the next keystream word and thus we
complete a leakage chain from the target keyword to z257.

Combining these observations with the glimpse probabilities we get (proba-
bilities are presented over the equality sign)

i257 − z257
2/N
= S

(PRGA)
256 [1]

1/e
= S

(PRGA)
1 [1]

1/e2

= Y (10)

Thus we reach a probability of 2e−3/N for the complete scenario to occur and
in this case the correct target keyword is

SK[x] = S−1
x−1[i257 − z257] − jx−1 − Sx−1[x] (11)

Notice that when the chain breaks, there is still a probability of 1/N to have a
lucky guess and thus the overall probability for a successful guess is

IP[SK[x] = S−1
x−1[i257 − z257] − jx−1 − Sx−1[x]] ≈

≈ 2
e3N

· 1 + (1 − 2
e3N

) · 1
N

=

=
1
N

+
2

e3N
· (1 − 1

N
) ≈

≈ 1
N

· (1 +
2
e3

) ≈ 1.1 · 1
N

(12)

Simulations we carried out show that this analysis is somewhat optimistic and
that the actual probability for a correct guess (given that the IV conditions are
satisfied) is 1.075 · 1/N .

4.3 Complexity Analysis

Next we compare the attack parameters and probabilities to those of the WEP
attack. The probability of having a “good” IV increases from x

N2 in the WEP
attack to 1/N (need only Sx−1[1] = x). However, the advantage in the voting
process significantly decreases from 5% to 1.075/256. Thus the voting in this

attack is much harder than in the WEP attack, even though a larger fraction of
the IVs are “good” and this voting requires almost one million “good” IVs (see
Fig. 2) for recovering the target keyword with a probability that is close to 1.

However, a smarter key recovery algorithm can tolerate some errors in the
guessing. The algorithm can guess C possible values for every keyword and check
all the possible C�K branches, where a typical value for C is 4-5. Typical RC4
keys are 16 bytes or below, which makes the number of possibilities checked by
the algorithm no more than 516 ≈ 237. This attack can be further optimized
by using a smart branching strategy that instead of using a fixed branching
factor, selects the number of branches according to the result of the voting, e.g.,
avoiding branching when a single value sticks out clearly as the correct keyword.
However, in this extended abstract we limit the discussion to the simple case of
a fixed branching factor.

Fig. 2. The number of IVs that are required for different success probabilities (for the
attack on the Truncated RC4). The different graphs are for different selections of the
branching factor C.

In Fig. 2 we show the number of samples of “good” IVs that are required for
different success probabilities and different selections of the branching factor C.
For example, for C = 8 the attack requires a practical amount of 217 “good” IVs
in order to get a success probability of 80% for recovery of every keyword. The
selection of C depends heavily on the key length, where large C’s can be used
only when the key is short. For example, for a 16-byte key, using C = 8 implies
a time complexity of 816 = 248 and using C = 4 the time complexity drops to
232.

In the known (random) IV model the data complexity increases by a factor
of N , which is the expected number of IVs until a “good” one is found. With
the above parameter setting the data complexity for a known IV attack grows
to 225 whereas the time complexity remains the same 248.

5 The Fork Model

In this section we discuss a situation where many identical instances of RC4
diverge at a certain point, i.e., at a certain point they have the same state
(permutation and indices) and afterwards some small change to the state occurs,
causing each of the instances to evolve differently. A small change in this context
may be a change in j and possibly change to a small number of permutation
entries. We show that in this model, given a sufficient number of instances the
permutation at the divergence point can be recovered.

The attack goes iteratively over the permutation entries and recovers one
permutation value at a time. Let S be the permutation in the divergence point
and let t be an index for which the attacker wants to reveal S[t] = x. The
attacker waits until the round where the index i reaches location t and looks at
the keystream word that was emitted at that point. If the attacker is lucky, the
value x remains in location t until that round (we denote this event as A) and due
to the glimpse property the emitted value will be biased towards i−S[j] = i−x
(we denote the event where z = i − x by B). Using Lemma 1 (which is proved
in Appendix B) we estimate the probability of A with pA = 1/e and the glimpse
property guarantees that the event B occurs with probability 2/N . Assuming
independence of the events and uniform distribution of the output when both
event do not occur (when one event does not occur the probability if 0) we get

IP[x = i − z] = IP[A,B] + IP[¬A,¬B] · 1/N =
= 2/N · pA + (1 − 2/N) · (1 − pA) · 1/(N − 1) ≈
≈ 2/N · pA + (1 − pA) · 1/N =
= 1/N · (1 + pA) ≈
≈ 1/N · (1 + 1/e) (13)

This probability was verified through simulations and indeed the correct x value
has a significant advantage on other guesses. Through using a voting mechanism
where votes are given to values i−z, the correct value of x is expected to notice-
ably stick out. In Fig. 3 we analyze the number of iterations that are required for
recovery of x under these circumstances. After 20,000 iterations, every permu-
tation entry is recovered with success probability of 80%. The iterative step is
repeated for each of the permutation entries and under reasonable assumptions
of independency the same data can be reused for each of the locations.

Notice that in the case where 80% of the guesses are correct, there are still
50 permutation entries that are guessed incorrectly. However, the attacker can
avoid guesses that have only small advantage and use only those with high
level of confidence. As was shown in [KM+98] having a significant part of the
permutation provides the critical mass for completion of the state recovery task.

Fig. 3. The number of IVs that are required for different success probabilities (for the
attack on RC4 in the fork model.)

6 Attacking the Succeeding IV Mode

While presenting a practical key recovery attack for the preceding IV mode,
Fluhrer et-al only showed is [FMS01] several sets of weak keys for the succeeding
IV mode.

However, this mode of operation “almost” realizes the fork model, where the
first rounds of the KSA use an identical part of the key (the root key) whereas
the following rounds use different part of the key (IVs). The “almost” is due to
the fact that the KSA does not output words and thus the first leakage occurs
only in the beginning of the PRGA, i.e., after N − �K rounds that ruin N − �K

entries from the divergence permutation.
However, this hurdle can be overcome through appropriate adjustments. In

order to reveal a single permutation entry, the attacker can direct the leakage of
this value to a fixed location �K , which leaks through the �th

K keystream word.
In every step of the attack, the attacker fixes IV [0] and uses varying values

for the rest of the IV. After �K rounds of using words of the root key, The index
j in round �K depends on the “keyword” IV [0] in an additive manner and thus
every value IV [0] implies a different j�K

, a different value in location �K after
round �K and eventually a leakage of a different permutation entry to the �th

K

keystream word.
Thus for every value of IV [0] a new value leaks to the keystream. Notice

that the keywords are used in an additive manner and thus any increase of
IV [0] causes a similar increase in j at the corresponding round and eventually

the attacker learns the permutation at the divergence point, but with a fixed
shift that depends on the unknown j�K−1, and needs to try all possible 256
shifts in order to recover the correct permutation. Notice that j�K−1 is unknown
at this stage and thus every step of the attack (with a fixed IV [0]) exposes a
permutation entry from an unknown location. Thus the attacker needs to try all
possible values for j�K−1 in order to complete the recovery of the permutation.

Since every stage of the attack needs IVs with different IV [0], data cannot
be reused for the different stages and a multiplicative factor of N should be
considered when evaluating the amount of data that is needed for the attack,
i.e., instead of recovering the permutation with 214 keystreams and IVs the
attack needs 222 keystreams and IVs. The number of steps is proportional to the
amount of IVs.

Notice that the attack is somewhat wasty as it always works with one location
out of the �K locations that leak information to the keystream. This attack can
thus be further optimized for at least partial reuse of the data. The optimized
attack uses only N/�K values for IV [0] that have additive differences of �K

between them, and each of these values is reused for recovering �K permutation
entries. This optimization improves the data complexity of the attack by a factor
of �K and thus for a 16-byte key, the data complexity of the attack drops to 220.
However, this optimization works only in the chosen IV model.
The last step of the attack is a recovery of the root key from the permutation. An
efficient implementation of this stage is described in the appendix of [FMS01].

7 Fault Attack on RC4

In this section we describe a fault attack on RC4 that is based on realization of
the fork model.

7.1 The Attack Model

We assume that the attacker can apply several types of faults to the crypto-
graphic device; In a data fault the attacker causes some bit flipping changes to
RAM or internal registers. In a flow Fault the attacker causes small changes to
the flow of the executed program, e.g., skipping an instruction, changing the
address of accessed memory, etc.

Following [HS04] we assume that the attacker has only limited control over
the fault, that he can select the fault area but not a particular bit and that he
has no knowledge on which fault eventually occurred and when exactly had it
happened. As usually assumed in fault analysis, we assume that the attacker
can reset the system with the same key, i.e., cause the system to get back to
the original configuration, cancelling the previously made faults and reuse the
same key. This model is somewhat conservative, but more realistic than a model
where the attacker is more powerful.

7.2 The Attack

The objective of the attack is to recover the initial permutation of RC4 S0, which
is the output of the KSA and the input of the PRGA. Other permutations can be
recovered through similar approach. The attacker injects to the PRGA process
faults that change the progression of j, where in order to do that, the attacker
needs to inject either a fault to j or a fault to one of the entries of S that are
located closely after the index i.

The identical part of the instances is the execution until the fault and the
divergence is in the fault. By reusing the analysis from Sect. 5 we conclude that
the number of faults that are required for recovery of the state that precede the
fault is 214.

8 Summary

In this paper we presented several new attacks of RC4, all relying on a combi-
nation of a leakage of state information to the keystream with a slow evolution
of the state, both of which are inherent properties of RC4 fundamental mech-
anisms. Since the leakage is from a “moving target” part of the state we could
not exploit it to attack the keystream generation of RC4 and the applicability
of the attack is limited to particular modes of operation.

We proved the common belief that throwing 256 words removes all the vul-
nerabilities of RC4 initialization to be faulty by showing that the preceding IV
mode remains weak even in this case. Despite of the fact that the attack is ap-
plicable only for a particular key-IV combination method, we believe that similar
attacks on equivalent key-IV combination methods such as exclusive-or and suc-
ceeding IV, are not out of reach. RC4 KSA is intolerably sensitive to related key
analysis and minimal control is sufficient for an attacker to direct this leakage
to desired places.

RSA Security recommends in [RSA01] on employing at least one of omitting
256 bytes and employing stronger key-IV combination method. From our findings
this recommendation turns to be insufficient as it “allows” modes of operation
that are completely insecure. Our recommendation is to avoid using RC4 without
employing both strengthening methods or at least to throw a longer prefix of
the keystream as proposed by Mironov in [Mir02] .

In addition, we presented attacks on the succeeding IV mode than are stronger
than previously known ones and a new fault attack that is comparable to known
ones in its complexity.

References

[Fin94] Hal Finney: An RC4 Cycle that Can’t Happen. (1994)
[Roo95] Andrew Roos: A Class of Weak Keys in the RC4 Stream Cipher. Posted to

sci.crypt (1995)
[Jen96] Robert J. Jenkins: Isaac and RC4. http://burtleburtle.net/bob/rand/isaac.html.

[Gol97] Jovan Dj. Golić: Linear Statistical Weakness of Alleged RC4 Keystream Gen-
erator. EUROCRYPT 1997: 226-238

[KM+98] Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen and Sven Ver-
doolaege: Analysis Methods for (Alleged) RC4. ASIACRYPT 1998: 327-341

[MT98] Serge Mister, Stafford E. Tavares: Cryptanalysis of RC4-like Ciphers. Selected
Areas in Cryptography 1998: 131-143

[Gol00] Jovan Dj. Golić: Iterative Probabilistic Cryptanalysis of RC4 Keystream Gen-
erator. ACISP 2000: 220-233

[GW00] Alexander L. Grosul and Dan S. Wallach: a Related-Key Cryptanalysis of
RC4. Technical Report TR-00-358, Department of Computer Science, Rice
University (2000)

[FM00] Scott R. Fluhrer and David A. McGrew: Statistical Analysis of the Alleged
RC4 Keystream Generator. FSE 2000: 19-30

[MS01] Itsik Mantin and Adi Shamir: A Practical Attack on Broadcast RC4, FSE
2001: 152-164

[FMS01] Scott R. Fluhrer, Itsik Mantin and Adi Shamir: Weaknesses in the Key
Scheduling Algorithm of RC4. Selected Areas in Cryptography 2001: 1-24

[Man01] Itsik Mantin: The Security of the Stream Cipher RC4. Master Thesis (2001)
The Weizmann Institue of Science

[SIR01] Adam Stubblefield, John Ioannidis, Aviel D. Rubin: Using the Fluhrer,
Mantin, and Shamir Attack to Break WEP. NDSS 2002

[RSA01] RSA Security Response to Weaknesses in Key Scheduling Algorithm of RC4.
Technical Report, RSA Data Security (2001)

[Mir02] Ilya Mironov: (Not So) Random Shuffles of RC4. CRYPTO 2002: 304-319
[PP03] Souradyuti Paul, Bart Preneel: Analysis of Non-fortuitous Predictive States

of the RC4 Keystream Generator. INDOCRYPT 2003: 52-67
[PP04] Souradyuti Paul, Bart Preneel: A New Weakness in the RC4 Keystream

Generator and an Approach to Improve the Security of the Cipher. FSE
2004: 245-259

[Zol04] Bartosz Zoltak: VMPC One-Way Function and Stream Cipher. FSE 2004:
210-225

[HS04] Jonathan J. Hoch, Adi Shamir: Fault Analysis of Stream Ciphers. CHES
2004: 240-253

[BGN05] Eli Biham, Louis Granboulan, Phong Q. Nguyen: Impossible Fault Analysis
of RC4 and Differential Fault Analysis of RC4. FSE 2005: 359-367

[Max05] Alexander Maximov: Two Linear Distinguishing Attacks on VMPC and
RC4A and Weakness of RC4 Family of Stream Ciphers. FSE 2005: 342-358

[Man05] Itsik Mantin: Predicting and Distinguishing Attacks on RC4 Keystream Gen-
erator, EUROCRYPT 2005: 491-506

[TS+05] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Maki Shigeri, Tomoyasu
Suzaki, and Takeshi Kawabata: The Most Efficient Distinguishing Attack
on VMPC and RC4A, SKEW 2005

A Availability of the Glimpse

The existence of the glimpse stems from the usage of permutation access of depth
two when selecting the output value. In Conjecture 1 we generalize the glimpse
in a different direction than Theorem 2 and claim that the glimpse will exist for
almost any output selection function of depth two.

We begin with defining a general output selection function. Let f, g : [N] →
[N] be invertible functions and denote the corresponding inverse functions by F
and G respectively. Let h : [N] × [N] → [N] be a 2-parameter function that is
invertible in each of its parameters, and let H1 and H2 be the inverse functions
of h where

∀X,Y ∈ [N], H1(X,h(X,Y)) = Y,H2(h(X,Y), Y) = X

Conjecture 1 (The Generalized Glimpse Conjecture).

Let Z(S, i, j)
def
= f(S[h(S[g(i)], S[j])]) be an output selection function of an

RC4-like keystream generator. Then,

IPj∈R[N],S∈RP[N][S[j] = H1(F (Z(S, i, j)), g(i))] ≈ 2/N (14)

We will give the intuition behind Conjecture 1. In order to simplify the expres-
sions we define Z ′ def

= F ◦ Z and i′
def
= g(i) and thus given that Z ′(S, i, j)

def
=

S[h(S[i′], S[j])] we need to show that

IPj∈R[N],S∈RP[N][S[j] = H1(Z ′(S, i, j), i′)] ≈ 2/N (15)

We define two functions over the domain of RC4 states and two corresponding
events. The internal dependency function IDF (S, i′, j) is defined as h(S[i′], S[j])
and the event where i′ = IDF (S, i′, j) is denoted as AIDF . The external depen-
dency function EDF (S, i′, j) is defined as H1(Z ′(S, i′, j), i′) and the event where
S[j] = EDF (S, i′, j) is denoted as AEDF . Our arguments follow the original
proof of the glimpse.

We observe two cases. In the first case AIDF occurs. In that case AEDF

occurs with probability 1 in the same manner as the original glimpse

z′
def
= Z ′(S, i, j) = S[h(S[i′], S[j])] = S[i′] (16)

i′ = h(S[i′], S[j]) = h(z′, S[j]) (17)
S[j] = H1(z′, i′) = H1(F (Z(S, i, j)), g(i)) (18)

In the other case, IDF (S, i, j) is almost random and with the uncertainty in
S and j causes a distribution that is very close to uniform for z′. Thus the
probability of AEDF is 1/N · 1 + (1 − 1/N) · 1/N ≈ 2/N .

B RC4 State Evolution

RC4 permutation evolves fairly rapidly with the generation, where on every
round two values change locations. The index i progresses in a predictive manner
traversing the permutation sequentially and thus guarantees that no location
or value is left untouched during a sequence of N rounds (it is possible that
a value is swapped with itself). The index j adds pseudo-randomness to the
state progression by jumping between the permutation entries in a seemingly

unpredicted manner. However, when concentrating on a sequence that is shorter
than N rounds, there are permutation entries which are guaranteed not to be
visited by the index i, and these entries have relatively high probability not to
be touched also by j during this sequence of rounds.

We formalize this situation in Lemma 1 and quote its proof from [Man05].

Lemma 1 (The Evolution Lemma). Let I be a set of r permutation loca-
tions. Suppose that RC4 is in a state where the predictable course of the index i
in the next k rounds avoids visiting I. Then the probability of the permutation
S k rounds later to have the values in I unchanged is approximately e−kr/N .

Proof. The index i does not reach any of the indices in I. The index j progresses
in a pseudo-random manner and reaches each of the r positions in each of the k
rounds with probability 1/N . Failing in these kr trials results with having the set
I untouched and the probability of this event to occur is (1− 1/N)kr ≈ e−kr/N .

��
In the special case where r = 1 and k ≤ N we have a bound of 1/e for the
probability of a single value, located more than k entries ahead of i to remain
in place during the following k rounds.

