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Abstract. We introduce a new cryptographic primitive called the blind

coupon mechanism (BCM). In effect, the BCM is an authenticated bit
commitment scheme, which is AND-homomorphic. It has not been known
how to construct such commitments before. We show that the BCM has
natural and important applications. In particular, we use it to construct
a mechanism for transmitting alerts undetectably in a message-passing
system of n nodes. Our algorithms allow an alert to quickly propagate to
all nodes without its source or existence being detected by an adversary,
who controls all message traffic. Our proofs of security are based on a
new subgroup escape problem, which seems hard on certain groups
with bilinear pairings and on elliptic curves over the ring Zn.
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1 Introduction

Motivation. As more computers become interconnected, chances increase greatly
that an attacker may attempt to compromise your system and network resources.
It has become common to defend the network by running an Intrusion Detection
System (IDS) on several of the network nodes, which we call sentinels. These
sentinel nodes continuously monitor their local network traffic for suspicious ac-
tivity. When a sentinel node detects an attacker’s presence, it may want to alert
all other network nodes to the threat. However, issuing an alert out in the open
may scare the attacker away too soon and preclude the system administrator
from gathering more information about attacker’s rogue exploits. Instead, we
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Fig. 1. Abstract group structure used in our BCM construction.

would like to propagate the alert without revealing the ids of the sentinel nodes
or the fact that the alert is being spread.

We consider a powerful (yet computationally bounded) attacker who observes
all message traffic and is capable of reading, replacing, and delaying circulating
messages. Our work provides a cryptographic mechanism that allows an alert
to spread through a population of processes at the full speed of an epidemic,
while remaining undetectable to the attacker. As the alert percolates across the
network, all nodes unwittingly come to possess the signal, making it especially
difficult to identify the originator even if the secret key is compromised and the
attacker can inspect the nodes’ final states.

A New Tool: A Blind Coupon Mechanism. The core of our algorithms is a
new cryptographic primitive called a blind coupon mechanism (BCM). The
BCM is related, yet quite different, from the notion of commitment. It consists
of a set DSK of dummy coupons and a set SSK of signal coupons (DSK ∩
SSK = ∅). The owner of the secret key SK can efficiently sample these sets
and distinguish between their elements. We call the set of dummy and signal
coupons, DSK ∪ SSK , the set of valid coupons.

The BCM comes equipped with a verification algorithm VPK(x) that
checks if x is indeed a valid coupon. There is also a probabilistic combining

algorithm CPK(x, y), that takes as input two valid coupons x, y and outputs
a new coupon which is, with high probability, a signal coupon if and only if at
least one of the inputs is a signal coupon. As suggested by the notation, both
algorithms can be computed by anyone who has access to the public key PK of
the blind coupon mechanism.

We regard the BCM secure if an observer who lacks the secret key SK (a)
cannot distinguish between dummy and signal coupons (indistinguishability);
(b) cannot engineer a new signal coupon unless he is given another signal coupon
as input (unforgeability); and (c) cannot distinguish randomly chosen coupons
from coupons produced by the combining algorithm (blinding).

Our Main Construction. Our BCM construction uses an abstract group
structure (U, G, D). Here, U is a finite set, G ⊆ U is a cyclic group, and D is
a subgroup of G. The elements of D will represent dummy coupons and the
elements of G \ D will be signal coupons (see also Figure 1). The combining
operation will simply be a group operation. To make verification possible, there



will need to be an easy way to distinguish elements of G (valid coupons) from
elements of U \G (invalid coupons).

In order for the BCM to be secure, the following two problems must be hard
on this group structure:

– Subgroup Membership Problem: Given generators for G and D and an
element y ∈ G, decide whether y ∈ D or y ∈ G \D.

– Subgroup Escape Problem: Given a generator for D (but not G), find
an element of G \D.

The subgroup membership problem has appeared in many different forms
in the literature [11, 16, 18, 28, 29, 31, 33]. The subgroup escape problem has not
been studied before. To provide more confidence in its validity, we later analyze
it in the generic group model.

Notice that the task of distinguishing a signal coupon from a dummy coupon
(indistinguishability) and the task of forging a signal coupon (unforgeability)
are essentially the subgroup membership and subgroup escape problems. The
challenge thus becomes to find a concrete group structure (U, G, D) for which
the subgroup membership and the subgroup escape problems are hard.

We provide two instantiations of the group structure: one using groups with
bilinear pairings, and one using elliptic curves over composite moduli.

Why is a BCM Useful? The BCM can potentially be useful in various appli-
cations. If signal coupons are used to encode a “1” and dummy coupons a “0”,
then a BCM can be viewed as an OR-homomorphic bit commitment scheme.
The BCM is indeed hiding because dummy and signal coupons appear the
same to an outside observer. It is also binding because the sets of dummy
and signal coupons are disjoint. In addition, the BCM’s verification function en-
sures the commitment is authenticated. By switching signal coupons to encode
a “0” and dummy coupons to encode a “1”, we get an AND-homomorphic bit
commitment. As far as we know, it has not been known how to construct such
commitments before. The BCM thus provides a missing link in protocol design.
Using BCM together with techniques of Brassard et al. [7], we can obtain short
non-interactive proofs of circuit satisfiability, whose length is linear in the num-
ber of AND gates in the circuit. Other potential uses include i-voting (voting
over the Internet) [10].

Spreading Alerts with the BCM. Returning to our original motivation,
we demonstrate how a BCM can be used to propagate alerts quickly and quietly
throughout the network. During the initial network setup, the network admin-
istrator generates the BCM’s public and secret keys. He then distributes signal
coupons to sentinel nodes. All other nodes receive dummy coupons. In our mech-
anism, nodes continuously transmit either dummy or signal coupons with all
nodes initially transmitting dummy coupons. Sentinel nodes switch to sending
signal coupons when they detect the attacker’s presence. The BCM’s combining
algorithm allows dummy and signal coupons to be combined so that a node can



propagate signal coupons without having to know that it has received any, and
so that an attacker (who can observe all message traffic) cannot detect where or
when signals are being transmitted within the stream of dummy messages.

In addition, the BCM’s verification algorithm defends against Byzantine
nodes [25]: While Byzantine nodes can replay old dummy messages instead of
relaying signals, they cannot flood the network with invalid coupons, thereby
preventing an alert from spreading; at worst, they can only act like crashed
nodes.

We prove that if the underlying BCM is secure, then the attacker cannot
distinguish between executions where an alert was sent and executions where no
alert was sent. The time to spread the alert to all nodes will be determined by
the communications model and alert propagation strategy. At any point in time,
the network administrator can sample the state of some network node and check
if it possesses a signal coupon.

Paper Organization. The rest of the paper is organized as follows. We begin
with a discussion of related work in Section 2. In Section 3, we formally define
the notion of a blind coupon mechanism and sketch an abstract group structure,
which will allow us to implement it. Then in Section 4, we provide two concrete
instantiations of this group structure using certain bilinear groups and elliptic
curves over the ring Zn. In Section 5, we show how the BCM can be used to
spread alerts quietly throughout a network. In Section 6, we analyze the hardness
of the subgroup escape problem in the generic group model. Some of the proofs
have been omitted due to space limitations; they can be found in the full version,
available as a Yale CS technical report [3]. Conclusions and open problems appear
in Section 7.

2 Related Work

Our motivating example of spreading alerts is related to the problem of anony-
mous communication. Below, we describe known mechanisms for anonymous
communication, and contrast their properties with what can be obtained from
the blind coupon mechanism. We then discuss literature on elliptic curves over
a ring, which are used in our constructions.

2.1 Anonymous Communication

Two basic tools for anonymous message transmission are DC-nets (“dining-
cryptographers” nets) [9,19] and mix-nets [8]. These tools try to conceal who the
message sender and recipient are from an adversary that can monitor all network
traffic. While our algorithms likewise aim to hide who the signal’s originators
are, they are much less vulnerable to disruption by an active adversary that can
delay or alter messages, and they can also hide the fact that a signal is being
spread through the network.



DC-nets enable one participant to anonymously broadcast a message to oth-
ers by applying a dining cryptographers protocol. A disadvantage of DC-nets for
unstructured systems like peer-to-peer networks is that they require substan-
tial setup and key management, and are vulnerable to jamming. In contrast,
the initialization of our alert-spreading application involves distributing only a
public key used for verification to non-sentinel nodes and requires only a single
secret key shared between the sentinels and the receiver, jamming is prevented
by the verification algorithm, and outsiders can participate in the alert-spreading
(although they cannot initiate an alert), which further helps disguise the true
source. As the signal percolates across the network, all nodes change to an alert
state, further confounding the identification of an alert’s primary source even if
a secret key becomes compromised.

The problem of hiding the communication pattern in the network was first
addressed by Chaum [8], who introduced the concept of a mix, which shuffles
messages and routes them, thereby confusing traffic analysis. This basic scheme
was later extended in [39, 40]. A further refinement is a mix-net [1, 20, 21], in
which a message is routed through multiple trusted mix nodes, which try to hide
correlation between incoming and outgoing messages. Our mechanism is more
efficient and produces much stronger security while avoiding the need for trusted
nodes; however, we can only send very small messages.

Beimel and Dolev’s [4] proposed the concept of buses, which hide the mes-
sage’s route amidst dummy traffic. They assume a synchronous system and a
passive adversary. In contrast, we assume both an asynchronous system and very
powerful adversary, who in addition to monitoring the network traffic controls
the timing and content of delivered messages.

2.2 Elliptic Curves over a Ring

One of our BCM constructions is based on elliptic curves over the ring Zn, where
n = pq is a product of primes. Elliptic curves over Zn have been studied for nearly
twenty years and are used, inter alia, in Lenstra’s integer factoring algorithm [27]
and the Goldwasser-Kilian primality testing algorithm [17]. Other works [13,23,
31] exported some factoring-based cryptosystems (RSA [35], Rabin [34]) to the
elliptic curve setting in hopes of avoiding some of the standard attacks. The
security of our BCM relies on a special feature of the group of points on elliptic
curves modulo a composite: It is difficult to find new elements of the group
except by using the group operation on previously known elements. This problem
has been noted many times in the literature, but was previously considered a
nuisance rather than a cryptographic property. In particular, Lenstra [27] chose
the curve and the point at the same time, while Demytko [13] used twists and
x-coordinate only computations to compute on the curve without y-coordinates.
To the best of our knowledge, this problem’s potential use in cryptographic
constructions was first noted in [15].



2.3 Epidemic Algorithms

Our alert mechanism belongs to the class of epidemic algorithms (also called
gossip protocols) introduced in [12]. In these algorithms, each process chooses to
partner processes with which to communicate randomly. The drawback of gossip
protocols is the number of messages they send, which is in principle unbounded
if there is no way for the participants to detect when all information has been
fully distributed.

3 Blind Coupon Mechanism

The critical component of our algorithms that allows information to propagate
undetectably among the processes is a cryptographic primitive called a blind

coupon mechanism (BCM). In Section 3.1, we give a formal definition of the
BCM and its security properties. In Section 3.2, we describe an abstract group
structure that will allow us to construct the BCM.

3.1 Definitions

Definition 1. A blind coupon mechanism is a tuple of PPT algorithms (G,V , C,D)
in which:

– G(1k), the probabilistic key generation algorithm, outputs a pair of public
and secret keys (PK, SK) and two strings (d, s). The public key defines a
universe set UPK and a set of valid coupons GPK . The secret key implicitly
defines an associated set of dummy coupons DSK and a set of signal

coupons SSK .3 It is the case that d ∈ DSK and s ∈ SSK , DSK ∩ SSK = ∅,
and DSK ∪ SSK = GPK .

– VPK(y), the deterministic verification algorithm, takes as input a coupon
y and returns 1 if y is valid and 0 if it is invalid.

– z ← CPK(x, y), the probabilistic combining algorithm, takes as input two
valid coupons x, y ∈ GPK and produces a new coupon z. The output z is a
signal coupon (with overwhelming probability) whenever one or more of the
inputs is a signal coupon, otherwise it is a dummy coupon (see Figure 2).

– DSK(y), the deterministic decoding algorithm, takes as input a valid coupon
y ∈ GPK . It returns 0 if y is a dummy coupon and 1 if y is a signal coupon.

The BCM may be established either by an external trusted party or jointly
by the application participants, running the distributed key generation proto-
col (e.g., one could use a variant of [2]). In this paper, we assume a trusted
dealer (the network administrator) who runs the key generation algorithm and
distributes signal coupons to the supervisor algorithms of sentinel nodes at the

3 Note that membership in SSK and DSK should not be efficiently decidable when
given only PK (unlike membership in GPK). However, we require that membership
is always efficiently decidable when given SK.



x y C(x, y)

DSK DSK DSK

DSK SSK SSK

SSK DSK SSK

SSK SSK SSK

Fig. 2. Properties of the combining algorithm.

start of the system execution. In a typical algorithm, the nodes will continuously
exchange coupons with each other. The combining algorithm CPK enables nodes
to locally and efficiently combine their coupons with coupons of other nodes.
The verification function VPK prevents the adversary from flooding the system
with invalid coupons and making it impossible for the signal to spread.

For this application, we require the BCM to have certain specific security
properties.

Definition 2. We say that a blind coupon mechanism (G,V , C,D) is secure if
it satisfies the following requirements:

1. Indistinguishability: Given a valid coupon y, the adversary cannot tell
whether it is a signal or a dummy coupon with probability better than 1/2.
Formally, for any PPT algorithm A,
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2. Unforgeability: The adversary is unlikely to fabricate a signal coupon with-
out the use of another signal coupon as input4. Formally, for any PPT algorithm
A,

Pr

[

y ∈ SSK
(PK, SK, d, s)← G(1k);

y ← A
(

1k, PK, d
)

]

≤ negl(k)

3. Blinding: The combination CPK(x, y) of two valid coupons x, y looks like a
random valid coupon. Formally, fix some pair of keys (PK, SK) outputted
by G(1k). Let UD be a uniform distribution on DSK and let US be a uniform
distribution on SSK . Then, for all valid coupons x, y ∈ GPK ,

{

Dist(CPK(x, y), UD) = negl(k) if x, y ∈ DSK ,
Dist(CPK(x, y), US) = negl(k) otherwise.

(Here, Dist(A, B)
def
= 1

2

∑

x |Pr[A = x]−Pr[B = x]| is the statistical distance
between a pair of random variables A, B.)

4 The adversary, however, can easily generate polynomially many dummy coupons by
using CPK(·, ·) with the initial dummy coupon d that he receives.



To build the reader’s intuition, we describe a straw-man construction of a
BCM. Suppose we are given any semantically secure encryption scheme E(·)
and a set-homomorphic signature scheme SIG(·) by Johnson et al. [22]. This
signature scheme allows anyone possessing sets x, y ⊆ Zp and their signatures
SIG(x), SIG(y) to compute SIG(x ∪ y) and SIG(w) for any w ⊆ x. We rep-
resent dummy coupons by a random-length vector of encrypted zeroes; e.g.,
x = (E(0), . . . , E(0)). The signal coupons are represented by a vector of en-
cryptions that contains at least one encryption of a non-zero element; e.g.,
y = (E(0), . . . , E(0), E(1)). To prevent the adversary from forging coupons, the
coupons are signed with the set-homomorphic signature. The combining opera-
tion is simply the set union: CPK

(

(x, SIG(x)), (y, SIG(y))
)

=
(

x ∪ y, SIG(x ∪ y)
)

.
The drawback of this construction is immediate: as coupons are combined and
passed around the network, they quickly grow very large. Constructing a BCM
with no expansion of coupons is more challenging. We describe such a construc-
tion next.

3.2 Abstract Group Structure

We sketch the abstract group structure that will allow us to implement a secure
and efficient BCM. Concrete instantiations of this group structure are provided
in Section 4.

Let Γ = {Γk} be a family of sets of tuples (U, G, D, d, s), where U is a finite
set, and G is a subset of U . G also has a group structure: it is a cyclic group
generated by s. D is a subgroup of G generated by d, such that the factor group
G/D has prime order |G|/|D|. The orders of D and G/D are bounded by 2k;
moreover, |G|/|U | ≤ negl(k) and |D|/|G| ≤ negl(k).

Let G′ be a PPT algorithm that on input of 1k samples from Γk accord-
ing to some distribution. We consider Γk to be a probability space with this
distribution.

We assume there exists an efficient, deterministic algorithm for distinguishing
elements of G from elements of U \G, and an efficient algorithm for computing
the group operation in G.

– The key generation algorithm G(1k) runs G′ to sample (U, G, D, d, s) from
Γk, and outputs the public key PK = (U, G, d, k), the secret key SK = |D|,
as well as d and s.

The elements of D will represent dummy coupons, the elements of G\D will
represent signal coupons, and the elements of U \G will be invalid coupons
(see Figure 1).

– The verification algorithm VPK(y) checks that the coupon y is in G.

– The combining algorithm CPK(x, y) is simply the group operation com-
bined with randomization. For input x, y ∈ G, sample r0, r1 and r2 uniformly
at random from {0, 1, . . . , 22k − 1}, and output r0d + r1x + r2y.

– Because |D| · y = 0 if and only if y ∈ D, the decoding algorithm DSK

checks if |D| · y = 0.



The indistinguishability and unforgeability properties of the BCM will de-
pend on the hardness assumptions described below.

Definition 3. The subgroup membership problem for Γ asks: given a tuple
(U, G, D, d, s) from Γ and y ∈ G, decide whether y ∈ D or y ∈ G \D.

The subgroup membership problem is hard if for any PPT algorithm A,
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Various subgroup membership problems have been extensively studied in
the literature, and examples include the Decision Diffie-Hellman problem [11],
the quadratic residue problem [18], among others [28, 31, 33]. Our constructions
however are more related to the problems described in [16, 29].

Definition 4. The subgroup escape problem for Γ asks: given U , G, D and
the generator d for D from the tuple (U, G, D, d, s) from Γ , find an element
y ∈ G \D.

The subgroup escape problem is hard if for any PPT algorithm A,

Pr

[

y ∈ G \D (U, G, D, d, s)
$
← Γk;

y ← A(U, G, D, d)

]

≤ negl(k).

The subgroup escape problem has to our knowledge not appeared in the
literature before. It is clear that unless |G|/|U | is negligible, finding elements of
G \ D cannot be hard. We show in Section 6 that if |G|/|U | is negligible, the
subgroup escape problem is provably hard in the generic model.

We also note that the problem of generating a signal coupon from polynomi-
ally many dummy coupons is essentially the subgroup escape problem.

Theorem 1. Let Γ be as above. If the subgroup membership problem and the
subgroup escape problem for Γ are hard, then the corresponding BCM is secure.

Proof. Fix k and (U, G, D, d, s) sampled from Γk.
We prove the blinding property first, and start with the ideal case: For input

x, y ∈ G, sample r0 uniformly from {0, 1, . . . , |D| − 1}, and r1 and r2 uniformly
from {0, 1, . . . , |G/D| − 1}, and output r0g + r1x + r2y.

If x, y ∈ D, the product is uniformly distributed in D, since r0g is.
If x 6∈ D, then the residue class r1x + D is uniformly distributed in G/D.

Since r0g is uniformly distributed in D, the product is uniformly distributed in

5 Henceforth, we assume that groups we operate on have some concise description,
which can be passed as an argument to our algorithms. We also assume that group
elements can be uniquely encoded as bit strings.



G. The uniform distribution on G is |D|/|G|-close to the uniform distribution
on G \D. The same argument holds for r2y.

Finally we note that we do not need to know |D| or |G/D|. Since we know
that |D| and |G/D| are less than 2k, sampling r0, r1, r2 uniformly from the set
{0, . . . , 22k − 1} will produce an output distribution that is 2−k-close to ideal,
which proves the bound for blinding

Next, we prove the indistinguishability property, so let A be an adversary
against indistinguishability. We have a subgroup membership problem instance
(U, G, D, d, s) and y ∈ G. We construct the public key PK = (U, G, d, k), and
give A as input PK, d and y.

If A answers 1, we conclude that y ∈ G \D, otherwise y ∈ D. Whenever A
is correct, we will be correct, so A must have negligible advantage.

Finally, we deal with forging. Let A be an adversary against unforgeability.
We have a subgroup escape problem instance U , G and D, and a generator d for
D. Again we construct the public key PK = (U, G, d, k), and give A as input
PK and d.

Our output is simply A’s output. Whenever A succeeds, we will succeed, so
A must have negligible success probability. ⊓⊔

4 Constructing the BCM

We now give two instantiations of the abstract group structure (U, G, D) de-
scribed in the previous section. First, we review some basic facts about elliptic
curves over composite moduli in Section 4.1. Then, in Section 4.2, we describe
our BCM construction that utilizes these curves. In Section 4.3, we describe
an alternative BCM construction on elliptic curves equipped with bilinear pair-
ings. These constructions can be used to undetectably transmit a one-shot signal
throughout the network. In Section 4.4, we describe how the BCM’s bandwidth
can be further expanded.

4.1 Preliminaries

Let n be an integer greater than 1 and not divisible by 2 or 3. We first intro-
duce projective coordinates over Zn. Consider the set Ū of triples (x, y, z) ∈ Z3

n

satisfying gcd(x, y, z, n) = 1. Let ∼ be the equivalence relation on Ū defined by
(x, y, z) ∼ (x′, y′, z′) iff there exists λ ∈ Z∗

n such that (x, y, z) = (λx′, λy′, λz′).
Let U be the set of equivalence classes in Ū . We denote the equivalence class of
(x, y, z) as (x : y : z).

An elliptic curve over Zn is defined by the equation

E : Y 2Z ≡ X3 + aXZ2 + bZ3 (mod n),

where a, b are integers satisfying gcd(4a2 − 27b3, n) = 1. The set of points on
E/Zn is the set of equivalence classes (x : y : z) ∈ U satisfying y2z ≡ x3+axz2+
bz3 (mod n), and is denoted by E(Zn). Note that if n is prime, these definitions
correspond to the usual definitions for projective coordinates over prime fields.



Let p and q be primes, and let n = pq. Let Ep : Y 2Z = X3 + apXZ2 + bpZ
3

and Eq : Y 2Z = X3 + aqXZ2 + bqZ
3 be elliptic curves defined over Fp and Fq,

respectively. We can use the Chinese remainder theorem to find a and b yielding
an elliptic curve E : Y 2Z = X3 + aXZ2 + bZ3 over Zn such that the reduction
of E modulo p gives Ep and likewise for q.

It can also be shown that the Chinese remainder theorem gives a set isomor-
phism

E(Zn)
∼

−→ Ep(Fp)× Eq(Fq)

inducing a group operation on E(Zn). For almost all points in E(Zn), the usual
group operation formulae for the finite field case will compute the induced group
operation. When they fail, the attempted operation gives a factorization of the
composite modulus n. Unless Ep(Fp) or Eq(Fq) has smooth or easily guessable
order, this will happen only with negligible probability (see [14] for more details).

4.2 BCM on Elliptic Curves Modulo Composites

Let p, q, ℓ1, ℓ2, ℓ3 be primes, and suppose we have elliptic curves Ep/Fp and Eq/Fq

such that #Ep(Fp) = ℓ1ℓ2 and #Eq(Fq) = ℓ3. Curves of this form can be found
using complex multiplication techniques [5, 26].

With n = pq, we can find E/Zn such that #E(Zn) = ℓ1ℓ2ℓ3. Let U be
the projective plane modulo n, let G be E(Zn), and let D be the subgroup of
order ℓ1ℓ3. The public key is PK = (G, D, n), while the secret key is SK =
(p, q, l1, l2, l3).

6

Verification Function For any equivalence class (x : y : z) in U , it is easy to
decide if (x : y : z) is in E(Zn) or not, simply by checking if y2z ≡ x3+axz2+bz3

(mod n).

Subgroup Membership Problem For the curve Ep(Fp), distinguishing the
elements of prime order from the elements of composite order seems to be hard,
unless it is possible to factor the group order [16].

Counting the number of points on an elliptic curve defined over a composite
number is equivalent to factoring the number [24,27]. Therefore, the group order
Ep(Fp) is hidden.

When the group order is hidden, it cannot be factored. It therefore seems
reasonable that the subgroup of E(Zn) of order ℓ1ℓ3 is hard to distinguish from
the rest of the points on the curve, as long as the integer n is hard to factor.

Subgroup Escape Problem Anyone capable of finding a random point on
the curve will with overwhelming probability be able to find a point outside the
subgroup D.

6 To describe groups G and D, we publish the elliptic curve equation and the generator
for D. This gives away enough information to perform group operations in G, check
membership in G, and generate new elements in D (but not in G).



Finding a random point on an elliptic curve over a field is easy: Choose a
random x-coordinate and solve the resulting quadratic equation. It has rational
solutions with probability close to 1/2.

This does not work for elliptic curves over the ring Zn, since solving square
roots modulo n is equivalent to factoring n. One could instead try to choose a
y-coordinate and solve for the x-coordinate, but solving cubic equations in Zn

seems no easier than finding square roots.

One could try to find x and y simultaneously, but there does not seem to be
any obvious strategy. This is in contrast to quadratic curves, where Pollard [36]
gave an algorithm to find solutions of a quadratic equation modulo a composite
(which broke the Ong-Schnorr-Shamir signature system [32]). These techniques
do not seem to apply to the elliptic curve case.

Finding a lift of the curve over the integers does not seem promising. While
torsion points are fairly easy to find, they will not exist if the curve E/Zn does
not have points of order less than or equal to 12. If we allow E/Zn to have points
of small order that are easily found, we can simply include them in the subgroup
D.

Finding rational non-torsion points on curves defined over Q is certainly non-
trivial, and seems impossibly hard unless the point on the lifted curve has small
height [38]. There does not seem to be any obvious way to find a lift with rational
points of small height (even though they certainly exist).

What if we already know a set of points on the curve? If we are given
P1, P2, P3 ∈ E(Zn), we can find, unless the points are collinear, a quadratic
curve

C : Y Z = αX2 + βXZ + γZ2

defined over Zn that passes through P1, P2, P3. Considering divisors, it is easy to
show that the fourth intersection point P4 is the inverse sum of the three known
points.

If points of the curve only yield new points via the group operation, and
it seems hard to otherwise find points on E(Zn), it is reasonable to assume
that E(Zn) and its subgroup, as described in the previous section, yield a hard
subgroup escape problem.

4.3 BCM on Groups With Bilinear Pairings

Let p, ℓ1, ℓ2, and ℓ3 be primes such that p+1 = 6ℓ1ℓ2ℓ3, and p = 2 (mod 3). Here,
l1, l2, l3 must be distinct and larger than 3. The elliptic curve E : Y 2 = X3 + 1
defined over Fp is supersingular and has order p + 1. Because F∗

p2 has order

p2−1 = (p+1)(p−1), there is a modified Weil pairing ê : E(Fp)×E(Fp)→ F∗

p2 .

This pairing is known to be bilinear: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ E(Fp)
and a, b ∈ Zp. It can be computed as described in [6].

Let U = E(Fp), and let G and D be the subgroups of E(Fp) of order ℓ1ℓ2 and
ℓ1, respectively. We also let P be a point in E(Fp) of order 6ℓ1ℓ2ℓ3, and let R be a
point of order 6ℓ3 in E(Fp), say R = ℓ1ℓ2P . The public key is PK = (G, D, p, R)



and the secret key is SK = (l1, l2, l3). The pairing ê allow us to describe G in
the public key without giving away secret information.

Verification Function We claim that for any point Q ∈ E(Fp), Q ∈ G if
and only if ê(Q, R) is equal to 1. If Q ∈ G, then Q has order ℓ1ℓ2 and for some
integer s, Q = 6sℓ3P . Then

ê(Q, R) = ê(6sℓ3P, ℓ1ℓ2P ) = ê(P, P )6sℓ1ℓ2ℓ3 = 1.

So the point R and the pairing ê allows us to determine if points are in G or in
U \G.

Subgroup Membership Problem Distinguishing the subgroup D (the points
of order ℓ1) from G (the points of order ℓ1ℓ2) can easily be done if the inte-
ger ℓ1ℓ2ℓ3 can be factored. In general, factoring seems to be the best way to
distinguish the various subgroups of E(Fp).

Because we do not reveal any points of order ℓ2 or ℓ2ℓ3, it seems impossible
to use the pairing to distinguish the subgroup D in this way. (Theorem 1 of [16]
assumes free sampling of any subgroup, which is why it and the pairing cannot
be used to distinguish the subgroups of E(Fp).) It therefore seems reasonable to
assume that the subgroup membership problem for G and D is hard, which will
provide indistinguishability.

Subgroup Escape Problem For a general cyclic group of order ℓ1ℓ2ℓ3, it is
easy to find elements of order ℓ1ℓ2 if ℓ3 is known. Unless ℓ3 is known, it is hard
to find elements of order ℓ1ℓ2, and knowing elements of order ℓ1 does not help.

For our concrete situation, factoring the integer ℓ1ℓ2ℓ3 into primes seems to
be the best method for solving the problem. If the primes ℓ1, ℓ2 and ℓ3 are
chosen carefully to make the product ℓ1ℓ2ℓ3 hard to factor, it seems reasonable
to assume that the subgroup escape problem for U , G and D is hard.

4.4 Extending the BCM’s Bandwidth

The blind coupon mechanism allows to undetectably transmit a single bit. Al-
though this is sufficient for our network alert application, sometimes we may
want to transmit longer messages.

Trivial Construction. By using multiple blind coupon schemes over different
moduli in parallel, we can transmit longer messages. Each m-bit message x =
x1 . . . xm is represented by a vector of coupons 〈c1, . . . , c2m〉, where each ci is
drawn from a different scheme. Each processor applies his algorithm in parallel
to each of the entries in the vector, verifying each coupon independently and
applying the appropriate combining operation to each ci.

A complication is that an adversary given a vector of coupons might choose
to propagate only some of the ci, while replacing others with dummy coupons.
We can enable the receiver to detect when it has received a complete message by



representing each bit xi by two coupons: c2i−1 (for xi = 0) and c2i (for xi = 1).
A signal coupon in either position tells the receiver both the value of the bit and
that the receiver has successfully received it.

Alas, we must construct and run Ω(m) blind coupon schemes in parallel to
transmit m bits.

Better Construction. Some additional improvements in efficiency are pos-
sible. As before, our group structure is (U, G, D). Suppose our cyclic group G
has order n0p1 · · · pm, where pi are distinct primes. Let D be the subgroup of G
of order n0.

An m-bit message x = x1 . . . xm is encoded by a coupon y ∈ G, whose order
is divisible by

∏

i : xi=1
pi. For all i, we can find an element gi ∈ G of order n0pi.

We can thus let y = gr1x1

1 · · · grmxm

m for random r1, . . . , rm ∈ {0, 1, . . . , 22k − 1}.
When we combine two coupons y1 and y2, it is possible that the order of

their combination CPK(y1, y2) is less than the l.c.m. of their respective orders.
However, if the primes pi are sufficiently large, this is unlikely to happen.

In Section 4.2, n0 is a product of two moderately large primes, while the other
primes can be around 280. For the construction from Section 4.3, n0 is prime,
but every prime must be fairly large to counter elliptic curve factorization.

This technique allows us to transmit messages of quite restricted bandwidth.
It remains an open problem whether some other tools can be used to achieve
higher capacity without a linear blow-up in message size.

5 Spreading Alerts with the BCM

In this section, we show how the BCM can be used to spread an alert quietly
and quickly throughout a network.

To summarize these results briefly, we consider a very general message-
passing model in which each node Pi has a “split brain,” consisting of an update

algorithm Ui that is responsible for transmitting and combining coupons, and
a supervisor algorithm Si that may insert a signal coupon into the system
at some point. The supervisor algorithm Si of sentinel nodes initially hands out
dummy coupons until attacker’s presence is detected when it switches to sending
signal coupons. Meanwhile, regular nodes’ Si always doles out dummy coupons.
The update algorithm Ui in each node may behave arbitrarily; the intent is that
it represents an underlying strategy for spreading alerts whose actions do not
depend on whether the process is transmitting a dummy or signal coupon.

The nodes carry out these operations under the control of a PPT attacker A
(who wants to remain undetectable) that can observe all the external operations
of the nodes and may deliver any message to any node at any time, including
messages of its own invention. (To save space, we omit a formal description of
the model from this extended abstract, deferring details to the full paper.)

We show first that, assuming the BCM is secure, the attacker can neither
detect nor forge alerts (with non-negligible probability) despite its total control
over message traffic. This result holds no matter what update algorithm is used



by each node; indeed, it holds even if the update half of each node colludes
actively with the adversary. We then give examples of some simple strategies for
spreading an alert quickly through the network with some mild constraints on
the attacker’s behavior.

5.1 Security

Let us begin with the security properties we want our alert-spreading mechanism
to have. In the following, we let ĉt

i be the indicator variable for the event that the
supervisor half of node Pi supplies a signal coupon at time t. (This is the only in-
formation we need about the behavior of Si.) We write Ξ(PK, SK,A, {Ui}, {ĉt

i})
for the probability distribution on protocol executions given the specified public
key, secret key, attacker, update algorithms, and supervisor behaviors.

Definition 5. A set of update algorithms {Ui} is secure if, for any adversary
algorithm A, and any T = poly(k), we have:

1. Undetectability: Given two distributions on executions, one in which no
signal coupons are injected by supervisors and one in which some are, the
adversary cannot distinguish between them with probability greater than 1/2.
Formally, let ĉ0,t

i = 0 for all i, t and let ĉ1,t
i be arbitrary. Then for any

PPT algorithm D,
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2. Unforgeability: The adversary cannot cause any process to transmit a sig-
nal coupon unless one is supplied by a supervisor. Formally, if ĉt

i = 0 for all
i, t, then there is no PPT algorithm A such that

Pr

[

∃(s, r, m, c) ∈ ξ ∧ (c ∈ SSK)

∣

∣

∣

∣

∣

(PK, SK, d, s)← G(1k);

ξ
$
← Ξ (PK, SK,A, {Ui}, {ĉt

i}) ;

]

≤ negl(k).

Security of the alert-spreading mechanism follows immediately from the se-
curity of the underlying blind coupon mechanism. The essential idea behind
undetectability is that because neither the adversary nor the update algorithms
can distinguish between dummy and signal coupons distributed by the supervi-
sor algorithms, there is no test that can detect their presence or absence. For
unforgeability, the inability of the adversary and update algorithms to generate a
signal coupon follows immediately from the unforgeability property of the BCM.

Theorem 2. An alert-spreading mechanism is secure if the underlying blind
coupon mechanism is secure.

Proof (sketch). We show first undetectability and then unforgeability.



Undetectability. Suppose that the alert-spreading mechanism does not satisfy
undetectability, i.e. that there exists a set of update algorithms {Ui}, an adver-
sary A, and pattern {ĉ1,t

i } of signal coupons that can be distinguished from only
dummy coupons by some PPT algorithm D with non-negligible probability.

Let us use this fact to construct a PPT algorithm B that violates indistin-
guishability. Let y be the coupon input to B. Then B will simulate an execution ξ
of the alert-spreading protocol by simulating the adversary A and the appropri-
ate update algorithm Ui at each step. The only components of the protocol that
B cannot simulate directly are the supervisor algorithms Si, because B does not
have access to signal coupons provided to the supervisor algorithms of sentinel
nodes. But here B lets ct

i = C(d, d) when ĉ1,t
i = 0 and lets ct

i = C(y, y) when

ĉ1,t
i = 1. By the blinding property of the BCM, if y ∈ DSK , then all coupons ct

i

will be statistically indistinguishable from uniformly random dummy coupons,
giving a distribution on executions that is itself statistically indistinguishable

from Ξ
(

PK, SK,A, {Ui}, {ĉ
0,t
i }

)

. If instead y ∈ SSK , then ct
i will be such that

the resulting distribution on executions will be statistically indistinguishable

from Ξ
(

PK, SK,A, {Ui}, {ĉ
1,t
i }

)

. It follows from the indistinguishability prop-

erty of the BCM that no PPT algorithm D can distinguish between these two
distributions with probability greater than 1/2 + negl(k).

Unforgeability. The proof of unforgeability is similar. Suppose that there is
some adversary and a set of update functions that between them can, with non-
negligible probability, generate a signal coupon given only dummy coupons from
the supervisor algorithms. Then a PPT algorithm B that simulates an execution
of this system and returns a coupon obtained by combining all valid coupons
sent during the execution forges a signal coupon with non-negligible probability,
contradicting the unforgeability property of the BCM.

⊓⊔

5.2 Performance

It is not enough that the attacker cannot detect or forge alerts: a mechanism
that used no messages at all could ensure that. To ensure that all non-faulty
nodes eventually receive an alert, we must specify both a strategy for the nodes’
update algorithms and place restrictions on the attacker’s ability to discard
messages. In the full paper, we give two simple examples of how alerts might be
spread in practice: a synchronous flooding algorithm that spreads an alert to all
nodes in time proportional to the diameter of the network (after removing faulty
nodes), and a simple asynchronous epidemic algorithm that spreads the alert in
time O(n log n) in a complete network of n nodes, where at most a constant
fraction of nodes is faulty. In each case the behavior of the update algorithms
is straightforward: invalid incoming coupons are discarded, while valid incoming
coupons are combined with previous coupons.



6 Generic Security of the Subgroup Escape Problem

We prove that the subgroup escape problem is hard in the generic group model [37]
when the representation set is much larger than the group.

Let G be a finite cyclic group and let U ⊆ {0, 1}∗ be a set such that |U | ≥ |G|.
In the generic group model, elements of G are encoded as unique random strings.
We define a random injective function σ : G → U , which maps group elements
to their string representations. Algorithms have access to an oracle that on input
of x± y returns σ(σ−1(x)± σ−1(y)) when both x, y ∈ σ(G) ⊆ U , and otherwise
the special symbol ⊥. An algorithm can use the oracle to decide whether x ∈ U
is in σ(G) or not by sending the query x+x to the oracle. If x 6∈ σ(G), the reply
will be ⊥.

Theorem 3. Let D be a subgroup of G ⊆ U . Let g be a generator of D. Let A
be a generic algorithm that solves the subgroup escape problem. If A makes at
most q queries to the group oracle, then

Pr
[

y ∈ G \D
∣

∣

∣
A(1k, σ(g)) = σ(y)

]

≤
q(|G| − |D|)

(|U | − q)
.

Proof. The algorithm can only get information about σ through the group oracle.
If the input to the oracle is two elements known to be in σ(D), then the adversary
learns a new element in σ(D).

To have any chance of finding an element of σ(G \ D), the adversary must
use the group oracle to test elements that are not known to be in σ(D).

Suppose that after i queries, the adversary knows a elements in σ(D) and b
elements of U \ σ(G) (a + b ≤ i). For any z outside the set of tested elements,
the probability that z ∈ σ(G \D) is exactly (|G| − |D|)/(|U | − b) (note that it
is independent of a).

Therefore, the probability that the adversary discovers an element in σ(G\D)
with i+1 query is at most (|G|−|D|)/(|U |−i). For up to q queries, the probability
that at least one of the tested elements are in σ(G \D) is at most

q
∑

i=1

|G| − |D|

|U | − i
≤ q ·

|G| − |D|

|U | − q
.

For a sufficiently large universe U , this probability is negligible. ⊓⊔

7 Conclusion

We have defined and constructed a blind coupon mechanism, implementing a
specialized form of a signed, AND-homomorphic encryption. Our proofs of se-
curity are based on the novel subgroup escape problem, which seems hard on
certain groups given the current state of knowledge. Our scheme can be instanti-
ated with elliptic curves over Zn of reasonable size which makes our constructions
practical. We have demonstrated that the BCM has many natural applications.



In particular, it can be used to spread an alert undetectably in a variety of
epidemic-like settings despite the existence of Byzantine processes and a power-
ful, active adversary.
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