
Updatable Zero-Knowledge Databases

Moses Liskov

Computer Science Department
The College of William and Mary

Williamsburg, Virginia, USA
mliskov@cs.wm.edu

Abstract. Micali, Rabin, and Kilian [9] recently introduced zero-knowledge sets and databases,
in which a prover sets up a database by publishing a commitment, and then gives proofs about
particular values. While an elegant and useful primitive, zero-knowledge databases do not offer
any good way to perform updates. We explore the issue of updating zero-knowledge databases.
We define and discuss transparent updates, which (1) allow holders of proofs that are still valid
to update their proofs, but (2) otherwise maintain secrecy about the update.
We give rigorous definitions for transparently updatable zero-knowledge databases, and give
a practical construction based on the Chase et al [2] construction, assuming that verifiable
random functions exist and that mercurial commitments exist, in the random oracle model. We
also investigate the idea of updatable commitments, an attempt to make simple commitments
transparently updatable. We define this new primitive and give a simple secure construction.

Keywords: zero-knowledge databases, zero-knowledge sets, transparent updates, zero-knowledge,
protocols, commitments, updatable commitments

1 Introduction

Recently, zero-knowledge databases were introduced by Micali, Rabin, and Kilian [9]. A zero-
knowledge database is a finite partial function D mapping binary strings to binary strings (i.e.,
a set of pairs of strings (x, y) such that no two pairs have equal first entries but different second
entries).1 The database owner chooses D and “publishes” the zero-knowledge database in the form of
a commitment that pins down the database but leaks nothing, not even its size. Once the database
is committed, the set owner acts as a prover: on a query x, the prover gives a proof that either x
lies outside D or D(x) = y, while still not revealing any further information about D. Commitments
and proofs in a zero-knowledge database are non-interactive and done in the common random string
model. Zero-knowledgeness is shown by exhibiting a polynomial-time simulator that produces a full
transcript distribution (i.e., the commitment and the proofs to all query strings) identical to that of
the real prover, knowing only “D(x) = y” or “x is not in D” for each query and at the last possible
moment. While it is conceptually simpler to deal with computational zero-knowledge (and in fact
computationally zero-knowledge databases were provided in earlier versions of their paper [5, 8]),
the Micali-Rabin-Kilian solution is more desirable because it is perfect zero-knowledge. Further, it is
much more efficient as it does not involve complex general purpose non-interactive zero-knowledge
proofs.

Zero-knowledge databases are a powerful primitive, but they have a major disadvantage in that
they are static. This seems like an undesirable property in most applications. For example, if the
database were a list of people under investigation for criminal activities, updates would be a critical
part of the system. Naively, the only way to update a zero-knowledge database would be to commit
to its new version from scratch. However, this is undesirable in two significant ways.
1 Micali, Rabin, and Kilian call these simple databases “elementary” databases. All databases in this paper

are of this simple type.

– First, the running time of such an update depends on the size of D, which may be huge, even
though the newest version may differ only on a single pair (x, y).

– Second, it may be that those who have seen proofs of membership or non-membership in the
original set may be entitled to, or may request again, the same proofs in the new set (for example,
if proofs are given due to subscription to some service). If this is the case, the owner would have
to reissue old proofs, which could be a huge additional expense.

The second of these points brings up a question that is of interest: when updating such a database,
should the proofs be updated as well, or should the new set be private even against those with old
proofs?2 Depending on the application in which the zero-knowledge set is used, either one may be
the desirable kind of update. We distinguish these two types of updates by giving them different
names:

– opaque updates make the updated commitment indistinguishable from a new commitment (hence,
the database becomes “opaque” to the users after the update);

– transparent updates allow the users to determine whether their proofs are still valid, and provide
a mechanism to update proofs (hence, “transparent” to proof holders).

We focus on the problem of transparent updates for two reasons: first, we believe it is the more
desirable of the two, as the idea of a subscription service of some type seems to naturally fit the idea
of a zero knowledge database, and second, an inefficient but adequate method exists for opaquely
updatable zero-knowledge sets, namely, reconstructing the updated commitment from scratch, while
no method exists for transparently updatable zero-knowledge sets.

In this paper, we define the notion of transparently updatable zero-knowledge databases, and
show how to construct efficient transparently updatable zero-knowledge databases both based specif-
ically on the Micali-Rabin-Kilian construction and on the more general construction of Chase et al
[2], under the additional assumption that verifiable random functions exist in the random oracle
model. We also define the notion of an updatable commitment and give a computationally hiding,
perfectly binding secure updatable commitment scheme.

In appendix B, we discuss the problem of opaquely updatable zero-knowledge databases.

1.1 Related work

Zero knowledge sets were introduced in the work of Micali, Rabin, and Kilian [9]. Important pre-
cursors to zero knowledge sets appeared in earlier papers by those authors [5, 8]. Chase, Healy,
Lysyanskaya, Malkin, and Reyzin [2] describe the notion of mercurial commitments, that is, com-
mitments that can be “hard” or “soft,” an abstraction of the type of commitments used in the
Micali-Rabin-Kilian construction, and show that any mercurial commitment scheme can be used
to construct zero-knowledge databases. Recent work by Ostrovsky, Rackoff, and Smith [11] greatly
enlarges the functionality of zero-knowledge databases by allowing more complex queries (e.g., “does
the database’s support intersect a given string interval?”). They first design a data structure that,
without any privacy concerns, efficiently handles complex queries, and then augment it with zero-
knowledge proofs so as to provide privacy, constructing zero-knowledge sets under general assump-
tions.

1.2 Structure of the paper

In section 2, we give notation to be used in the rest of the paper. In section 3, we define the
security properties needed for updatable zero-knowledge databases. In section 4, we summarize
various primitives and previous work, and introduce the notion of updating commitments. In section
5, we give a construction for transparently updatable zero-knowledge databases. In section 6, we
discuss the efficiency of our construction. We conclude and discuss open problems in section 7.
2 It is possible that neither will hold, but it seems natural that we should want one of these.

2 Notation

We shall follow in our notation from many previous papers, particularly from [9, 1].

Probabilistic assignments and experiments. By x ← M we indicate that the variable x is assigned
according to M . If M is a finite set, we assume x is drawn from the uniform distribution on M .
The notation x1 ←M1; x2 ←M2; . . . denotes the probability distribution that arises when we first
assign x1 from distribution M1, then x2, et cetera. If p is a predicate, then the notation Pr[x1 ←
M1; x2 ←M2; . . . : p(x1, x2, . . .)] denotes the probability that p is true given that distribution.

Databases. A database D is a set of pairs {(x1, y1), . . . , (xn, yn)} such that for any database key x
there is at most one y such that (x, y) ∈ D. Each xi and each yi is a string of unbounded size. We
denote by [D] the support of D, that is, the set {x1, . . . , xn}. To indicate that x /∈ [D] we write
D(x) =⊥. If x ∈ [D] we write D(x) = y to indicate the unique string y such that (x, y) ∈ D. By
D(x) ← y we mean that D shall be changed so that D(x) = y. This may involve exchanging one
pair (x, y′) for (x, y), or adding (x, y) to the set, or if y =⊥, removing the pair (x, y′) if any such
pair is present.

Polynomial-time adversaries. For the purposes of our definitions, adversaries are specified as Turing
machines that repeatedly make outputs of the form (wi, si), where wi is some query and si is state
information the adversary will use to make the subsequent query. When we assume that such an A
is a polynomial-time adversary, we assume that not only is A a polynomial-time algorithm, but that
A will ultimately make only polynomially many queries before halting.

Adversary views. If A is an adversary, we define ViewA{x1 ← M1, . . . , xn ← Mn} to be a random
variable representing the randomness, inputs, and outputs of the adversary A through the compu-
tation of the values x1, . . . , xn according to the given probabilistic experiment. Presumably, some of
the probabilistic assignment sources Mi involve the adversary A, or the view would be trivial.

Binary trees. We use string notation to specify nodes in a binary tree. ε will be the root of the tree.
If v is a node in the tree, v0 will be the left child of v while v1 will be the right child. Values that
are stored in a tree at each node will have this string as a subscript; for example, aε would be the
value of a stored at the root node ε. If the depth of the tree is bounded by k, the longest strings
that refer to nodes in the tree will be of length k. We mean by a prefix of a string s any string ω
(including s) such that there is a string s′ such that ωs′ = s. Note that if ω is a prefix of s, then ω
will be a node that lies on the path from ε to s in a binary tree.

3 Definitions

Our goal in this section is to rigorously define transparently updatable zero-knowledge databases.

3.1 Mechanics

As with zero-knowledge databases, updatable zero-knowledge databases rely on a public random
string σ, the reference string. This string must have length polynomial in k, the security parameter.

There are three types of tasks the prover will have to be able to perform. First of all, she will
have to be able to commit to the database initially. Second, she will have to be able to issue proofs
of membership or non-membership in the database for any key. Finally, she will have to be able to
issue updates to the database.

A verifier should be able to verify proofs and to update proofs.

Transparently updatable database systems We say that a quintuple of Turing machines,
(Commit, Prove, DBUpdate, Verify, PUpdate), constitute a transparently updatable database system
or TUDB system if none of the machines retain state information after an execution and their
computation on common inputs 1k, a unary string called the security parameter, and σ, a binary
string called the reference string, proceeds as follows:

– The database commitment algorithm is Commit. On input (D, 1k, σ), Commit produces two
outputs: (1) a string PK, called D’s public key (or commitment), and (2) a string SK, called
D’s secret key.

– The database proof algorithm is Prove. On input (D, 1k, σ, PK, SK), and an additional input
x ∈ {0, 1}∗, Prove outputs a string πx, called D’s proof about x.

– The database update algorithm is DBUpdate. On input (D, 1k, σ, PK, SK), an additional input
x ∈ {0, 1}∗, and a value y ∈ {0, 1}∗∪{⊥}, DBUpdate computes a new public key PK ′ and a new
secret key SK ′ for the updated database in which D(x) = y, and a string U called the update
information about x and y, which will be used to update proofs.

– The proof verifying algorithm is Verify. On input (1k, σ, PK) and an additional x ∈ {0, 1}∗
together with its proof πx, Verify outputs either a string y ∈ {0, 1}∗ (meaning that it believes
y = D(x), ⊥ (meaning that it believes that x is outside D’s support), or reject (meaning that
it detected cheating).

– The proof update algorithm is PUpdate. On input (1k, σ, PK, PK ′, U), and an additional x ∈
{0, 1}∗ together with its proof πx, PUpdate outputs either a new proof π′

x, which will be called
the updated proof about x, ⊥ (meaning that the update given by PK ′, U was about x and so the
proof cannot be updated), or reject (meaning that it detected cheating).

3.2 Security properties

Updatable zero-knowledge databases must satisfy certain security properties: completeness, sound-
ness, and zero-knowledge. We first describe the desired properties informally, and then formalize our
definitions.

Completeness dictates that if the prover and verifier are honest, then for any database, if the prover
updates the database any number of times, then gives the verifier a proof about x, and then updates
the database any number of times, the verifier may update their proof and obtain a valid one, except
with negligible probability, so long as D(x) was not updated after the proof was issued.

Soundness guarantees that the prover is in fact committed to a particular database. That is, given
the reference string σ it should be hard for any prover to come up with a PK and any element for
which it can prove two different values.

The zero-knowledge property of updatable zero-knowledge databases is trickier to describe. Ideally,
the adversary should learn nothing more than the values of elements for which a proof has been
obtained (and possibly updated), and that updates have occurred. However, we have not been able
to realize this full level of security, and instead offer a weaker but acceptable notion of security. Each
key x that might be included in the database will have a pseudonym N(x). Instead of revealing only
that an update has occurred, we reveal that an update has occurred about the key relating to a
particular pseudonym. Thus, the pattern of updates is revealed (since the pseudonym is constant
for a constant x, so repeated updates on keys can be discovered). In addition, the link between a
value x and its pseudonym N(x) will be revealed by Prove. However, we require that no information
beyond this be revealed.

This alone does not constitute a high enough level of security: N(x) could reveal information
about x. One particular N that is desirable is one that answers 1 to its first input, 2 to its second

distinct input, and so on. We call this pseudonym the pattern pseudonym NP , as revealing NP (x)
for many x is equivalent to revealing the pattern of values.

To say this more clearly, a system is zero-knowledge with respect to pseudonym N if, even given
any adversary A and any database D the views of A in each of the following two experiments are
indistinguishable.

1. First, a random reference string σ is chosen. Then, D is chosen by A and given to the prover,
who creates an updatable zero-knowledge database based on D and σ, committing to it with PK
while keeping SK private. Then the adversary adaptively chooses a sequence of strings x1, x2, . . .
where either xi = Query(x) or xi = Update(x, y). When xi is a query, the prover returns a proof
πi that either x is in the database or that x is not in the database. When xi is Update(x, y), the
prover updates so that D(x) = y and sends PKi, Ui to the adversary.

2. The simulator Sim, on input only the security parameter k, produces a string σ of the proper
length, and a public key PK. The adversary adaptively chooses a sequence of strings x1, x2, . . .,
where either xi is either Query(x) or Update(x, y). If xi = Query(x), the simulator is told x,
N(x), and D(x), (where D is up to date, starting with the initial D), and must compute πi.
If xi is an update Update(x, y), the simulator is given N(x) and must compute SK1, PK1, U1,
while D is updated so that D(x) = y. Note that the pseudonym function N is not part of the
adversary or the simulator here, but rather is thought of as an oracle that is only called when
the game specifies.

In the first scenario, there is no pseudonym function. In the second, the pseudonym function
exists, however, the adversary is not directly aware of its presence; the adversary specifies updates
Update(x, y) which get translated into N(x) for the simulator.

The concept of pseudonyms seems inevitable in any zero-knowledge database construction. A
zero-knowledge database is in some sense a committed tree, and a particular element must have
a unique place to reside (so that we can prove non-membership), which can be thought of as its
pseudonym. Furthermore, we cannot use zero-knowledge proofs that reveal nothing about the data
structure – the user has to learn enough to allow them to update, but this seems to be the only way
to avoid revealing pseudonyms. We have not been able to conceive of a system that does not use
pseudonyms, or that uses them but does not reveal them.

We say a transparently updatable database is secure if it is complete, sound, and zero-knowledge
with respect to the pattern pseudonym NP . We say it is secure with respect to N if it is complete,
sound, and zero-knowledge with respect to N . Thus, while we may talk about security with respect
to other pseudonyms, we regard NP as the only truly acceptable one.

Efficiency properties In order for us to consider an updatable zero-knowledge database efficient,
we ask that:

– The running time of the procedure that generates the initial commitment may depend on the
size of the database, but all other running times must be independent of the size.

– None of the sizes of the outputs other than SK may depend on the number of updates.
– None of the running times of any of the verifier algorithms may depend on the number of

updates that have been performed (in a sense limiting total performance to linear in the number
of updates, since some procedures are performed once per update).

3.3 Formal definitions

We formalize our definitions in appendix A.

4 Preliminaries

Before we present our construction, we first review some crucial building blocks used in our con-
struction. Some of our text follows closely from the preliminaries section from [9].

4.1 Updatable commitments

Here, we define updatable commitments. In an ordinary commitment scheme, there are two algo-
rithms: C, which takes a message m as input and produces c and d, where c is the commitment,
and d is the information used to open the commitment later, and V , which takes a commitment
c, a message m, and a decommitment d, and checks whether c was a commitment to m, using d.
Note that there may also be public parameters which are inputs to all algorithms, but for clarity we
simplify.

In an updatable commitment, there will be one more algorithm: U , which takes a message m and
decommitment information d, and produces a commitment c, where d will be the decommitment
information used to open c. The binding property is defined in the natural way. The hiding property
is essentially that commitments be indistinguishable under a chosen message attack, where the
adversary may ask for commitments, updated commitments, and decommitments of his choice, so
long as he doesn’t ask for a decommitment of the challenge or any message derived from the challenge
through updates.

Our construction. Our construction is quite simple. Given a secure perfectly binding commitment
scheme and a secure pseudorandom permutaiton P , we can construct a simple computationally
hiding, perfectly binding commitment scheme as follows:

C(m): generate a key K for the pseudorandom permutation, a random string IV , and compute c1, a
commitment to K under the commitment scheme and d1, the related decommitment information,
and c2, the evaluation of the pseudorandom permutation on m ⊕ IV with key K. Output c =
(c1, c2, IV), and d = (K, c1, d1).

V((c1, c2, IV), m, (K, c1, d1)): check that c1 is a commitment to K using d1. If not, reject. Then,
check that c2 = PK(m⊕ IV). If so, accept, if not, reject.

U(m, (K, c1, d1)): compute c2 = PK(m) and output c = (c1, c2).

It is clear that any commitment is a commitment to one specific value, since c1 specifies a
unique K, and given that K, c2 specifies a unique m. Furthermore, c2 is the encryption of the
one-block message m under CBC mode, so if this scheme is not hiding, then either the PRP is not
pseudorandom or the underlying commitment scheme is not hiding. This is true even if K is used
for many different commitments, so long as K is never revealed.

4.2 Mercurial commitments

Mercurial commitments were introduced recently by Chase et al [2] with direct application to zero-
knowledge sets and databases. A mercurial commitment is a commitment scheme in which there are
two kinds of commitments and two kinds of ways to decommit.

– A “hard commitment” is a commitment to a particular value. It can only be decommitted to
that value, whether the decommitment is a hard or a soft one.

– A “soft commitment” is a commitment to no value. It can never be hard-decommitted, but it
can be soft-decommitted to any value.

A mercurial commitment scheme is secure when it is hiding (in the sense that the type of a
commitment is kept secret as well as the value if the commitment is a hard commitment) and
binding (in the sense that the committer cannot break the above rules.) Mercurial commitments
have a non-interactive commitment and decommitment, but require the public random string model.
In fact, they also have a trap-door property: if the public random string is chosen by a simulator,
the simulator can avoid the binding properties.

4.3 Pedersen’s commitment scheme

Pedersen’s commitment scheme [12] assumes the availability of a public quadruple (p, q, g, h), where
p and q are prime, q|p − 1 and g and h are generators for G, the cyclic subgroup of Z∗

p of order q,
for which computing discrete logarithms is assumed to be hard.

The commitment and verification algorithms are defined as follows, where all operations are
performed modulo p:

C((p, q, g, h), m): randomly select r ∈ Zq and output (c, r), where c = gmhr is the commitment
string, and r is the (for the time being secret) proof.

V((p, q, g, h), c, m, r): If c = gmhr, then accept; else, reject.

This commitment scheme is perfectly hiding and computationally binding.
The mercurial commitment scheme used in [9] is based directly on this commitment scheme.

Instead of using g as the base to compute gm directly, we use a different base for each commitment:
ge for a hard commitment or he for a soft commitment, and publish the base that we use as part of
the commitment (where e is random). A soft decommitment consists of publishing r; then, it can be
checked that c = bmhr where b is the base being used. A hard decommitment involves publishing r
as well as e, so that it can also be checked that ge = b.

4.4 CHLMR zero-knowledge databases

The following is a summary of the general zero-knowledge database construction of Chase, Healy,
Lysyanskaya, Malkin, and Reyzin [2].

ZK databases. The construction works in the public random string model, that is, there is a
common random reference string σ.

In order to force every key to be of length k, we first hash them to obtain the database {(H(x), y)}.
Every node in the tree can be labelled by a string ω ∈ {0, 1}≤k. At each node ω there will be the
following values associated:

– A value vω. If ω = H(x) for some x ∈ [D] then vω = H(D(x)). If |ω| = k but ω �= H(x) for
any x ∈ [D] then vω = H(⊥). If ω is an internal node, the value vω is defined recursively as
H(cω0cω1) where cω is defined below. Essentially, the values vω make the tree a Merkle tree.

– A commitment cω which is either a soft commitment or a hard commitment to vω .
– Decommitment information dω for the commitment cω.

The commitment to the database is the commitment cε from the root node ε.
In order to prove that an element x is in the database, the set owner gives a proof consisting of:

1. D(x), so that H(D(x)) is the value vH(x).
2. For every ω that is a prefix of H(x), cω and a hard decommitment of cω, and
3. For every ω that is a sibling along the path from ε to H(x), the value cω.

The verifier uses this to construct the values vω for every ω that is a prefix of H(x), and then
checks the hard decommitments.

In order to prove that an element x is not in the database, the set owner gives a proof consisting
of:

1. For every ω that is a prefix of H(x), cω and a soft decommitment of cω to vω , and
2. For every ω that is a sibling along the path from ε to H(x), the value cω.

The verifier checks as before, except that the verifier uses D(x) =⊥, and that the decommitments
are soft.

The key to the efficiency of the construction is the use of mercurial commitments. If ordinary
commitments were to be used, the entire tree of depth k would have to be computed, which is clearly
exponential. However, the tree is constructed so that soft commitments are used for any node that
has no descendents in the data set, which allows the prover to not compute those parts of the tree
ahead of time, but allows the prover to compute those parts of the tree when necessary, and be able
to decommit.

4.5 Verifiable random functions

Verifiable random functions or VRFs were first presented by Micali, Rabin, and Vadhan [10], and
subsequent constructions appear in [6, 3]. A verifiable random function consists of four algorithms:
a key generating algorithm GenVRF that produces a pair (PK, SK) on input 1k, an algorithm
ComputeVRF that computes fSK(x), an algorithm ProveVRF that gives proofs π that a value y =
fSK(x) is correctly generated from x, and an algorithm VerVRF that verifies proofs, with the following
informal properties:

1. If (PK, SK) are generated from GenVRF, and y is generated from ComputeVRF(SK, x) and π is
generated from ProveVRF(SK, x), then VerVRF(PK, x, y, π) will accept.

2. fSK is a pseudorandom function, even to an adversary that may request both outputs and
outputs with proofs, so long as the two sets of queries do not overlap.

3. No adversary can produce a (PK, SK) pair for which it can give proofs that will be verified for
incorrect values.

In particular, note that no adversary should be able to compute fSK(x) given x and PK.

5 Our construction

We describe our construction incrementally. First, we describe how to go about updating a CHLMR
database efficiently. Then, we go on to describe how to provide update information that will allow
proof holders to update their proofs. Then we give a construction with an unspecified pseudonym
N and prove security relative to N . We then prove security in the random oracle model and discuss
issues that arise relative to implementing the random oracle.

5.1 Updating a CHLMR database

Suppose that we wish to assign a particular value y (possibly ⊥) to D(x), for a given x, in a given
CHLMR database.

Our first goal is to efficiently compute a new commitment to a CHLMR database with the
updated value. This is fairly easy to do, and natural. Essentially, we just change the values at the
leaf we are interested in, and update the internal nodes of the tree to maintain the required structure.
To update the value D(x), we regenerate the commitment cH(x) and from this recompute the values

and commitments in the tree going up along the path from H(x) to ε, leaving everything else the
same. Now, for every prefix ω of H(x), the value vω may change, so the value cω may also change.
The set owner then publishes cε anew.

In order to make this fit all the properties of a ZK database, we must be careful when adding an
element to the set that all its ancestors are hard commitments. Thus, when we add an element to the
set that was previously not in the set, we must make commitments along the path hard commitments,
even if they were previously soft commitments. In fact, we can simply make all commitments in any
update hard commitments, to simplify.

5.2 A simple mechanism for updating proofs

Now, the updated database is a CHLMR database, just as was constructed before.3 The next step
is to determine what information is necessary to allow proof holders to update their proofs. Since a
proof is essentially a hash path in the tree along with decommitments to the values along that path,
and the only internal nodes or commitments that have changed are the ones along the path from ε to
H(x), we could just publish all the commitments at the updated internal nodes. However, this is not
quite sufficient, because decommitments are necessary for the proofs to be complete. To solve this,
we need to modify our mercurial commitment scheme so that it is updatable, but the requirements
are a little more complex than the requirements for an updatable commitment. Specifically, we need
to be able to update such that (1) the updated commitment is always a hard commitment, and (2)
the holder of a decommitment (soft or hard) can update their decommitment to a new one of the
same type.

Under general assumptions, the best known mercurial commitment is only computationally hid-
ing. In order to make an updatable one, we need to combine a mercurial commitment scheme and
an updatable commitment scheme as follows. Instead of publishing only the mercurial commitment
c, we also publish cH and cS where cH is an updatable commitment to the hard decommitment of c
(or a random string if it is a soft commitment), and cS is an updatable commitment, initially to a
random string, but after any updates, to a soft decommitment of c. A hard decommitment involves
opening cH , while a soft decommitment involves opening cS , and also giving a soft decommitment to
c. This means a verifier will notice a difference between opening an original commitment and opening
an updated one, but this will be acceptable for our means. Updating the commitment (c, cH , cS) is
done by replacing c with a fresh commitment and updating cH and cS to be commitments to their
new appropriate values.

We can also make the MRK mercurial commitment updatable in this way, simply by reusing r.
When we update a commitment, we always make it hard, so we also publish e. It is worth noting
that this is not as hiding as we might like such a commitment to be in isolation, since (for instance)
the ratio between jm and (ge)m′

is revealed, and an unbounded adversary could learn information
from this. This costs us perfect zero-knowledge in our construction, but under the DDH assumption,
this is still hiding. We should also note that updating commitments in this way does not give a
mechanism for the verifier to determine m′, but, in our application, m′ can be derived from other
information.

5.3 Attaining zero-knowledge with respect to N

Now we have a system where after an update we have a zero-knowledge database, and proofs can be
updated. However, the updates do not preserve secrecy. The issue has to do with the pseudonym we
use. Here, we use H(x) as a pseudonym. In order to more carefully discuss the issue of our choice
of pseudonym, we specify this construction by describing it in terms of an unspecified pseudonym
N(x).
3 Except, some commitments might be hard that don’t need to be hard commitments, but by the properties

of mercurial commitments, this is an indistinguishable change

Commit(D, 1k, σ): Run the database commitment algorithm but instead of using H(x) to define an
element’s position in the tree, use N(x).

Prove(D, 1k, σ, PK, SK, x): run the database proof algorithm, looking for x at position N(x) to
obtain πx.

DBUpdate(D, 1k, σ, PK, SK, x, y): create a new commitment cN(x) to vN(x) = H(y). Recursively,
for each ω that is a prefix of N(x), update cω to be a hard commitment of vω . Compute PK ′ = cε,
update SK ′ by remembering all the new decommitment information, and compute U = {ω, cω}
for all prefixes ω of N(x).

Verify(1k, σ, PK, x, πx): run the proof verifying algorithm to verify πx, using N(x) instead of H(x),
and check the value given as N(x) to be sure it is correct.

PUpdate(1k, σ, PK, PK ′, U, x, πx): if U is an update about N(x), output ⊥. (Note that N(x) would
be known from πx.) Otherwise, for every ω that is a prefix of N(x) and is included in U , we have
a decommitment to the old cω, so we update our decommitment. For every ω that is a sibling
along the path, we change our value of cω to the value of cω given in the update U . Finally, we
check our updated proof, and reject if it does not yield the same value, otherwise we outpud π′

x,
our updated proof.

Theorem 1. This scheme is a secure zero-knowledge transparently updatable database with
respect to N .

Proof. Due to space constraints, we only provide a proof sketch here. A more detailed proof
may be found in appendix C.

Completeness of this construction should be clear. Since the form of any database commitment
and proof are just as in [2] except with a different scheme to assign database locations to database
keys, soundness here follows from the soundness of their construction and the uniqueness of the
mapping x �→ N(x).

For zero-knowledgeness we must show a simulator that has the required properties. First of
all, the simulator generates σ so that the mercurial commitment simulator can be used (that is,
the simulator can break the binding property of the scheme). The simulator then generates a soft
commitment cε and publishes it.

When the simulator is asked for a proof that D(x) = y and is given x and N(x), it simply does
exactly as the CHLMR database simulator does, except that the path is a path from ε to N(x).
When the simulator is asked to update a value with a given pseudonym n, it performs an update
just as DBUpdate would, using y = ε, creating cω values for each ω that is a prefix of n for which cω

was not already determined in a proof. (Note that DBUpdate does not need to know x if it knows
N(x).)

The values given in the proofs issued by the system are just sequences of commitments, decom-
mitted to the correct values, so the distribution of the proofs given by the simulator and those given
by the real prover are indistinguishable. The distribution of updates is also identical except that the
simulator always sets y = ε. However, the only value that depends directly on y is cN(x) which is a
(fresh) commitment, so in fact the distribution of update strings is also indistinguishable. Thus, we
achieve zero-knowledge.

5.4 Attaining security in the random oracle model

We now have a system that gives a transparently updatable zero-knowledge database with respect
to N for an unspecified N . Unfortunately, we cannot simply specify N = NP and be done, because
NP cannot be computed in a way verifiable to the user. This problem can be solved by assuming
the random oracle model. The idea is that we use a random oracle that may be controlled by the
simulator to compute N(x). It should be clear that a random oracle computed on x and a random

oracle computed on NP (x) are identical. Thus, the simulator simulates the random oracle on input
NP (x) by evaluating a random function on it. By doing this, the simulator may naturally compute
N(x) knowing only NP (x). Thus, such a simulator shows that if we use a random oracle as N(x),
our construction is secure.

5.5 Implementing the random oracle

Using the random oracle model has significant problems. First of all, random oracles are generally
implemented by collision-resistant hash functions, but this cannot always be done securely. There is
also an issue of pseudonym collisions, which we discuss this issue in appendix D.

Most importantly, though, we cannot simply use a public hash function here, because doing
so would allow the adversary to query the pseudonym function, but it was one of our security
requirements that the adversary not be able to do this. Ideally, the adversary should only be able
to learn if a particular update was about x by querying the database at x.

The pseudonym function we propose to use is H∗(x) = H(f(H(x))) where H is a hash function
and f is a verifiable random function. We will still assume that H is a random oracle, but now, even
if H is a random oracle, the adversary cannot query H∗. Before we jump into the security proof for
this pseudonym, we must modify our construction slightly, because H∗(x) cannot be computed by
the verifier.

– In Commit we also run GenVRF and make the public key PKf part of the public key, and keep
SKf as part of the secret key.

– In Prove(D, 1kσ, PK, SK, x), we also give π′
x = ProveVRF(SKf , H(x)) and z =

ComputeVRF(SKf , H(x)).
– In Verify, we additionally run VerVRF(PKf , H(x), z, π′

x) and check that H∗(x) = H(z) before
accepting.

This fits nicely into our original specification; we are simply expanding the idea of what it means
to check that H∗(x) is correctly computed.

Theorem 2. This construction is secure in the random oracle model.

Proof. Again, we give only a sketch of the proof, due to space constraints. See appendix C for
a full proof.

Completeness is already established by our proof of Theorem 1. To prove soundness, we need
only note that the pseudonym H∗(x) that will be verified is unique, from the soundness property of
the VRF.

Zero-knowledge is more of a challenge. We give a simulator with respect to NP that gives us
computational zero-knowledge. First, the simulator makes σ and the database commitment cε just
as the previous simulator does. The simulator then runs GenVRF to generate (PKf , SKf), and
publishes (PKf , cε) as the database commitment.

The simulator must answer three kinds of messages: random oracle queries, database queries,
and update queries. The simulator maintains two random functions, H and H ′, with the idea that
H ′(NP (x)) = H(f(H(x))). When the simulator receives an update query, it computes H∗(x) =
H ′(NP (x)). When the simulator receives a database query, the simulator computes H(x), and then
computes z = fSKf

(H(x)), and then sets H(z) = H ′(NP (x)) and fakes a proof that the value stored
at H∗(x) = H ′(NP (x)) is y, just as the simulator does in theorem 1.

The illusion that H ′(NP (x)) = H(fSKf
(H(x))) is maintained as long as H(z) is not already

defined to be something else when the simulator tries to set H(z) = H ′(NP (x)). However, if this
happens with non-negligible probability, it must be because either we have found an f -collision with
non-negligible probability, or because the adversary has queried H(z) separately. In either case,

we can use such an adversary to break the pseudorandomness of f . Because ultimately, the zero-
knowledge property of our scheme may be defeated by defeating the pseudorandomness of f , we
only get computational zero-knowledge.

We note that if we restrict the adversary a bit further, we can actually remove the random oracle
assumption. Specifically, if we require that whenever the adversary requests an update about x, that
either the adversary has already queried the database at x, or the adversary will never query the
database about x, then we can prove zero-knowledge without the random oracle. We can also remove
the random oracle if we use general NIZK proofs. We discuss this further in appendix E.

6 Efficiency

Our proposal for the mecahnics of a transparently updatable database embeds the idea that for each
update (even of a single element) to the database, a public update string is published, and that for
each update string that is published, each user updates each of their proofs. Given this syntax, our
performance is optimal in terms of the number of updates: each update induces additional work for
both the database owner and the user, but the amount of work per update is independent from the
number of updates. However, the total amount of work a user must do to maintain a proof is linear
in the number of updates. In appendix F we describe some minor efficiency improvements along
these lines.

7 Conclusion and open problems

We have given a secure construction of a transparently updatable zero-knowledge database that
is both efficient and practical in the random oracle model. For our construction to be secure, we
must assume the existence of a VRF, and that mercurial commitments exist. The most practical
construction that arises from this work is the extension of the original Micali-Rabin-Kilian construc-
tion, which requies the discrete logarithm assumption. These two assumptions can be combined by
using the VRF of Dodis and Yampolskiy [3], which relies on a more restrictive assumption than the
discrete logarithm assumption.

Some open problems that may be of interest would be to construct:

– Zero-knowledge transparently updatable databases with stronger security or more general as-
sumptions

– More efficient and/or perfect zero-knowledge opaque updates.
– Zero-knowledge databases the can be efficiently updated both transparently and opaquely.

Acknowledgements

The author sincerely and deeply thanks Susan Hohenberger, Anna Lysyanskaya, Silvio Micali, and
Adam Smith for their helpful comments. The author also especially wishes to thank the anonymous
program committee members who have provided useful feedback.

References

1. Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-knowledge.
SIAM Journal on Computing, 20(6):1084–1118, December 1991.

2. Melissa Chase, Alex Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin. Mercurial commitments
with applications to zero-knowledge sets. In Advances in Cryptology—EUROCRYPT 2005, Lecture
Notes in Computer Science. Springer-Verlag, 22 – 26 May 2005.

3. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In
Serge Vaudenay, editor, 8th International Workshop on Theory and Practice in Public Key Cryptography,
volume 3386 of lncs, pages 416–432. Springer-Verlag, 2005.

4. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(1):691–729, 1991.

5. J. Kilian. Efficiently committing to databases. TR 97-040, NEC Research Institute, 1997.

6. Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH separation.
In Moti Yung, editor, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Computer Science.
Springer-Verlag, 2002.

7. Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in Cryptology—
CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer-Verlag, 1990,
20–24 August 1989.

8. Silvio Micali and Michael Rabin. Hashing on strings, cryptography, and protection of privacy. In
Proceedings of Compression and Complexity of Sequences, page 1, Los Alamitos, California, 11–13 June
1997. IEEE Computer Society.

9. Silvio Micali, Michael Rabin, and Joseph Kilian. Zero-knowledge sets. In 44th Annual Symposium on
Foundations of Computer Science, Cambridge, MA, October 2003. IEEE.

10. Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In 40th Annual Symposium
on Foundations of Computer Science, pages 120–130, New York, October 1999. IEEE.

11. R. Ostrovsky, C. Rackoff, and A. Smith. Efficient proofs of consistency for generalized queries on a
committed database. In Proceedings of ICALP 2004, 2004.

12. Torben Pryds Pedersen. A threshold cryptosystem without a trusted party (extended abstract). In D. W.
Davies, editor, Advances in Cryptology—EUROCRYPT 91, volume 547 of Lecture Notes in Computer
Science, pages 522–526. Springer-Verlag, 8–11 April 1991.

Appendix A: Formal definitions for opaque updates

These definitions are closely derived from [9]. Here, we formalize the definitions described in section
3.2.

Updatable database simulators

Let Sim be a probabilistic polyonomial-time oracle Turing machine. We say that Sim is an updatable
database simulator (or UDB simulator) if it computes as follows, relative to an external database D
and pseudonym function N :

1. In its first execution, SimN outputs three strings, σ, PK, and SK.
2. In a subsequent execution on input SK and a triple (x, D(x), N(x)), SimN (SK, x, D(x), N(x))

outputs a string πx.
3. In a subsequent execution on input SK and n, SimN (SK, n) computes PK ′, SK ′, U where SK ′

becomes the new secret key, and PK ′ and U are outputs. When this happens, D may change at
up to one input, namely an x such that N(x) = n.

Transparently updatable zero-knowledge databases

Let (Commit, Prove, DBUpdate, Verify, PUpdate) be a TUDB system where all the Turing machines in
the quintuple run in probabilistic polynomial time. We say that (Commit, Prove, DBUpdate, Verify,
PUpdate) is a zero-knowledge transparently updatable database system (or ZKTUDB system) if there
exists a UDB simulator Sim and a constant c such that

1. Completeness. ∀ database D, ∃ν negligible such that ∀k, ∀r, s, t such that 0 ≤ s ≤ r ≤ kc,

Pr[σ ← {0, 1}kc

; (PK, SK)← Commit(D, 1k, σ);
x1 ← {0, 1}≤t; y1 ← {0, 1}≤t; . . . ; xr ← {0, 1}≤t; yr ← {0, 1}≤t; x← {0, 1}≤t

(PK ′, SK ′, U)← DBUpdate(D, 1k, σ, PK, SK, (x1, y1)); PK ← PK ′; SK ← SK ′;
D(x1)← y1; . . . ;
(PK ′, SK ′, U)← DBUpdate(D, 1k, σ, PK, SK, (xs, ys)); PK ← PK ′; SK ← SK ′;
D(xs)← ys; πx ← Prove(D, 1k, σ, PK, SK, x);
(PK ′, SK ′, U)← DBUpdate(D, 1k, σ, PK, SK, (xs+1, ys+1)); SK ← SK ′; D(xs+1)← ys+1;
πx ← PUpdate(1k, σ, PK, PK ′, U, x, πx); PK ← PK ′;
. . . ;
(PK ′, SK ′, U)← DBUpdate(D, 1k, σ, PK, SK, (xr, yr)); SK ← SK ′; D(xr)← yr;
πx ← PUpdate(1k, σ, PK, PK ′, U, x, πx); PK ← PK ′;
y ← Verify(1k, σ, PK, x, πx) :
if ∃l such that s < l ≤ r and xl = x then πx =⊥, otherwise y = D(x)] > 1− ν(k).

Here, s is the number of updates before the proof is given, and r is the number of updates total.
2. Soundness. ∀x ∈ {0, 1}∗ and ∀P ′ probabilistic polynomial time, ∃ν negligible such that ∀k,

Pr[σ ← {0, 1}kc

; (PK, x, π1, π2)← P ′(1k, σ);
y1 ← Verify(1k, σ, PK, x, π1); y2 ← Verify(1k, σ, PK, x, π2) :
reject /∈ {y1, y2} ∧ y1 �= y2] ≤ ν(k),

3. Zero-knowledge with respect to N . ∀A acceptable adversaries, ∀k, View(k) ≈ View′(k)4 where

View(k) =
ViewA{σ ← {0, 1}kc

; (D, s0)← A(1k, σ);
(PK, SK)← Commit(D, 1k, σ); z0 ← PK;
(w1, s1)← A(s0, z0);
If w1 = Update(x1, y1),

(PK ′
1, SK ′

1, U1)← DBUpdate(D, 1k, σ, PK, SK, x1, y1); SK ← SK ′
1; PK ← PK ′

1;
D(x1)← y1; z1 ← (PK ′

1, U1);
Else if w1 = Query(x1), π1 ← Prove(D, 1k, σ, PK, SK, x1); z1 ← π1;
(w2, s2)← A(s1, z1);
. . .}

and

View′(k) =
ViewA{(σ, PK, SK)← SimN (1k); (D, s0)← A(1k, σ);
z0 ← PK;
(w1, s1)← A(s0, z0);
If w1 = Update(x1, y1),

(PK ′
1, SK ′

1, U1)← SimN (SK, N(x1)); SK ← SK ′
1; PK ← PK ′

1;
D(x1)← y1; z1 ← (PK ′

1, U1);
Else if w1 = Query(x1), π1 ← SimN (SK, x1, D(x1), N(x1)); z1 ← π1;
(w2, s2)← A(s1, z1);
. . .}

4 As usual, ≈ may refer to computational indistinguishability (in which case the system is said to be “com-
putationally zero-knowledge”), statistical closeness (“statistical zero-knowledge”), or equality (“perfect
zero-knowledge”). For computational indistinguishability, A must be a polynomial-time adversary. For
statistical or perfect indistinguishability, we do not limit A’s power.

Appendix B: Opaquely updatable zero-knowledge databases

We define opaquely updatable zero-knowledge databases, and present a solution following ideas
from Rackoff, Ostrovsky, and Smith [11] that is inefficient and relies on general non-interactive zero-
knowledge proofs. We do not present any practical, efficient method better than simply committing
the updated database from scratch; indeed, we view this as an important open problem.

An opaquely updatable database system (or OUDB system) is a quadruple of algorithms (Commit,
Prove, DBUpdate, Verify) which satisfy the properties properties of a TUDB system, except that
DBUpdate outputs only PK ′, SK ′.

Zero-knowledge opaquely updatable databases are defined similarly to transparently updatable
ones. Let (Commit, Prove, DBUpdate, Verify) be a UDB system where all the Turing machines in the
quadruple run in probabilistic polynomial time. We say that (Commit, Prove, DBUpdate, Verify) is a
zero-knowledge opaquely updatable database system (or ZKOUDB system) if there is a UDB simulator
Sim and a constant c such that the following four properties are satisfied:

1. Perfect completeness. ∀ database D, ∀r, ∀ sequences of updates (x1, y1), . . . , (xr, yr), and ∀x ∈
[D] ∪ {x1, . . . , xr},
Pr[σ ← {0, 1}kc

; (PK, SK)← Commit(D, 1k, σ);
(PK ′, SK ′, U)← DBUpdate(D, 1k, σ, PK, SK, (x1, y1)); PK ← PK ′; SK ← SK ′;
D(x1)← y1; . . . ;
(PK ′, SK ′, U)← DBUpdate(D, 1k, σ, PK, SK, (xr, yr)); PK ← PK ′; SK ← SK ′;
D(xr)← yr; πx ← Prove(D, 1k, σ, PK, SK);
y ← Verify(1k, σ, PK, x, πx) :
y = D(x)] = 1.

2. Soundness. (Commit, Prove, DBUpdate, Verify) satisfies the soundness property of a ZKTUDB.
3. Zero-knowledge. (Commit, Prove, Verify) satisfies the zero-knowledge properties of a ZK database.

We actually want zero-knowledge to hold for an adversary that can adaptively ask for queries
and updates, but we capture the difference in our definition of update secrecy.

4. Update secrecy. For all appropriate A, View(k) ≈ View′(k) where:

View(k) =
ViewA{σ ← {0, 1}kc

; (D, s0)← A(σ); (PK, SK)← Commit(D, 1k, σ);
z0 ← PK; (w1, s1)← A(s0, z0);
If w1 = Update(x1, y1),

(PK ′, SK ′)← DBUpdate(D, 1k, σ, PK, SK, x1, y1); SK ← SK ′; PK ← PK ′;
D(x1)← y1; z1 ← PK ′;

Else if w1 = x1, π1 ← Prove(D, 1k, σ, PK, SK, x1); z1 ← π1;
(w2, s2)← A(s1, z1);
. . .}

and

View′(k) =
ViewA{σ ← {0, 1}kc

; (D, s0)← A(σ); (PK, SK)← Commit(D, 1k, σ);
z0 ← PK; (w1, s1)← A(s0, z0);
If w1 = Update(x1, y1),

D(x1)← y1; (PK ′, SK ′)← Commit(D, 1k, σ); SK ← SK ′; PK ← PK ′;
z1 ← PK ′;

Else if w1 = x1, π1 ← Prove(D, 1k, σ, PK, SK, x1); z1 ← π1;
(w2, s2)← A(s1, z1);
. . .}

Again, appropriate adversaries are polynomial-time adversaries for computational indistinguisha-
bility, and unbounded adversaries otherwise.

Opaquely updatable construction

To create an opaquely updatable zero-knowledge database, following Rackoff, Ostrovsky, and Smith
[11], we modify the CHLMR construction as follows. Instead of sending a proof πx to the verifier,
we give D(x) and a non-interactive zero-knowledge proof of knowledge relative to σ of knowledge
of πx such that πx is a valid proof. To update, we just update the values where required, but do
not publish any of the updated values. We clearly have zero-knowledge: in order to simulate, we
just randomly create cε initially and each time we are asked to update we create a new random
commitment, and any time we are asked to give a proof, we provide a faked non-interactive zero-
knowledge proof. Furthermore, cε form a random commitment whether or not they were generated
from DBUpdate, so we have update secrecy as well, and soundness and completeness follow from
these same properties of CHLMR databases.

However, such non-interactive zero-knowledge proof systems are also only computational zero-
knowledge. In addition, much effort was taken by Micali, Rabin, and Kilian to avoid both compu-
tational zero-knowledge and the need for general non-interactive zero-knowledge proofs. The large
amount of inefficiency added to the system may even overbalance the objection to the solution of
recommitting the database from scratch. We consider it a significant open problem to construct an
efficient and practical opaquely updatable zero-knowledge databases.

Appendix C: Detailed proof of security

Proof of Theorem 1. To prove theorem 1, we must make a minor additional asusmption, and
prove several things.

First of all, note that when an update occurs, the only difference between the secret information
in our construction and the secret information in a CHLMR database is that in our construction,
it may be that for some internal nodes ω which have no descendents in the tree, cω is a hard
commitment rather than a soft one. However, that is unimportant as proofs involving such an ω
as a node on the path will always be of nonmembership, and so only soft decommitments will be
revealed.

To prove completeness, note that when the database is updated, part of an old proof about a
different element will include path elements that have changed. However, such path elements are
always published as part of the update information, so they can simply be replaced. Thus, the
updated proof is valid. The only possible snag we can run into is that if N(x) = N(x′) then an
update about x′ would prevent a proof about x from being properly updated. Barring this, as long
as no updates have occurred about the element x since πx was issued, πx may be updated successfully.
To deal with this issue we must assume that N(x) is such that collisions are unlikely to occur. This
is certainly the case for all N we use.

To prove soundness, note that if a cheating prover were to be able to produce relative to a random
σ a public key PK and two valid proofs π1 and π2 proving different results about D(x) for some
particular x, then this same prover would violate the soundness of CHLMR databases.

To prove zero-knowledge, we describe the simulator. The simulator must do five things: it must
create the string σ, it must provide the initial commitment, and it must provide proofs and updates
when requested.

– To produce σ, PK, or to produce a proof that D(x) = y, the simulator runs just as the CHLMR
simulator does, except using N(x) instead of H(x) to determine the location of key pairs.

– To produce an update on a pseudonym n, computes vn = H(ε) and computes a new commitment
cn.
The simulator then updates all the commitments along the path from ε to n from soft to hard
commitments, with the proper values to maintain the Merkle tree structure. The simulator
incorporates any new decommitment information into SK ′.

Now, to prove that the view provided to the adversary in the real model is identical to that in the
ideal model, we describe the view of the adversary. In the real world, the adversary sees the random
string σ, and then after specifying D, the commitment cε. Then, for each proof query, the adversary
sees a proof about x which consists of an appropriate value vN(x) and random commitments cω

to appropriate values, forming a hash authentication path to the root. For each update query, the
adversary sees a pseudonym N(x), a new commitment at N(x), and for each proper prefix ω of
N(x), a random updated commitment cω. Furthermore, in the case of the discrete logarithm-based
scheme, the adversary also sees e for each such ω, which shows that all these commitments are hard
commitments.

In the ideal world, the adversary sees the simulated σ, followed by a distribution exactly the
same as in the real world, except that cN(x) is a commitment to H(ε) rather than H(y). However,
these commitments are hiding so this is indistinguishable from the view of the adversary in the real
world. In fact, in the case of the discrete logarithm-based scheme, the views are identical, since the
only difference is in what cω commits to where ω is a leaf, but cω is a perfectly hiding commitment.
Furthermore, the distribution of real σ values is identical to the distribution of simulated σ values
by the perfect zero-knowledge property of the Micali-Rabin-Kilian simulator.

Proof of Theorem 2. To prove that the construction using N(x) = H(fSKf
(H(x))) is strongly

secure, we must prove that it satisfies completeness, soundness, and computational zero-knowledge
with respect to NP in the random oracle model.

Completeness is already established by the completeness proof of Theorem 1; the only difference
here is that a VRF proof must be verified (note that indeed, N(x) here is unlikely to have collisions).
However, N(x) does not change when x is updated, so this part of the proof may remain the same.
To prove soundness, we need only note that the pseudonym N(x) that will be verified is unique from
the soundness property of the VRF.

Zero-knowledge is more of a challenge. We give a simulator with respect to NP that gives us
computational zero-knowledge. First, the simulator makes σ and the database commitment cε just
as the CHLMR simulator does. The simulator then runs GenVRF to generate (PKf , SKf), and
publishes (PKf , cε) as the database commitment. We must be careful to note here that NP is not
available as an oracle to the simulator, but NP (x) is given without x for any update query, and NP (x)
is given with x for any database query. H∗(x) here refers to the value used in the construction; the
actual pseudonym we are considering is NP (x).

The simulator maintains two random functions: H and H ′, with the idea that H ′(NP (x)) =
H(f(H(x))). Whenever we say the simulator must “compute” (say) H(x), the simulator looks to
see if it has ever set H(x) to any particular value. If so, it outputs that value. If not, it generates
a random value of the correct length, and notes the correspondence with x. There can never be a
problem with the simulator computing a value H(x) or H ′(x).

When the simulator receives an update query, it computes H ′(NP (x)), and uses this value as
H∗(x).

When the simulator receives a database query on x, y, NP (x), the simulator computes H(x), and
then computes z = fSKf

(H(x)), and then attempts to set H(z) = H ′(NP (x)). That is, if H is
not defined at z, H(z) is set to be the value computed from H ′(NP (x)). Otherwise, if H ′ is not yet
defined at NP (x), H ′(NP (x)) is set to be the value computed from H(z). If H(z) and H ′(NP (x)) are
already defined and equal to each other, the simulator sets nothing. However, if H(z) and H ′(NP (x))
are already defined and unequal, the simulator aborts. If the simulator does not abort, it fakes a

proof that the value stored at H∗(x) = H(z) = H ′(NP (x)) is y, just as the MRK simulator does,
and provides the value z along with ProveVRF(SKf , H(x)) that z = fSKf

(H(x)).
We must prove two things. First, in cases in which the simulator doesn’t abort, the adversary

cannot distinguish between the simulator and the real prover. We can assume without loss of gener-
ality that the adversary will always make a database query about every value x that he asks us to
update before he halts (doing so will only increase the probability that the simulator aborts). If the
simulator hasn’t aborted by the time the adversary halts, we can reconcile H ′ into H , since all values
H ′(NP (x)) will have been set equal to H(z) for some z (because the adversary has queried all points
for which we have a pseudonym). Thus, this simulator is doing exactly what the simulator in our
previous proof does: it accurately computes H∗(x) in every case and simulates proofs and updates
according to this. Thus, the view produced by such a simulator is identical to the view produced by
the real prover.

Second, if the simulator aborts with non-negligible probability, we can break the security of the
VRF as follows. On input a VRF public key PKf , we act as the simulator with the given adversary
in this experiment, except we give PKf as the VRF public key instead of generating it ourselves,
and we implement the simulator. Note that we only ever need to query fSKf

right before we ask for
a proof about it. After some number of queries, the probability that the next value we ask for will
cause an abort is non-negligible, so instead of asking for fSKf

(H(x)) that time, we pick a random z
such that H(z) is defined, and guess that fSKf

(H(x)) = z. We try this with the given oracle (which is
either the VRF or a random oracle), and if we are correct, we say that the oracle is a VRF, otherwise,
we guess at random. If the oracle is the VRF, and an abort would have been caused, then we have a
1/p(k) probability of guessing the right z, where p(k) is the polynomial determining how many inputs
have been queried from H . Thus, if the probability of an abort at the given step is 1/q(k), then the
probability that we break the VRF is (1/2)(1/(p(k)q(k))) + (1/4)(1− (1/p(k)q(k)) + 1/2(1− ν(k))
which is at least 1/2 + 1/(4p(k)q(k))− ν(k) for some negligible ν.

If the probability of an abort is non-negligible, it is non-negligible at some particular query. Thus,
there is some reduction that breaks the security of the VRF.

Appendix D: Pseudonym collisions

In the work of Micali, Rabin, and Kilian, the Pedersen hash function is used to assign pseudonyms
to database elements. One attractive property of using the Pedersen hash function is that if a
pseudonym collision occurs, the database owner learns the discrete logarithm of h to the base g, and
then may continue proving what would otherwise be impossible: for instance, that D(x) = y and
D(x′) = y′ �= y when H(x) = H(x′). This allows the database to have size that is unrelated to any
security parameters.

If, as we propose, we replace H(x) by N(x) = H(f(H(x))) for some verifiable random function
f , we lose this property: N could encounter collisions either from H-collisions or from f -collisions.
The former would be fine while the latter would be a problem. In practice, it is acceptable to limit
honest users to polynomial-size databases, in which case collisions are negligibly likely. However, we
can preserve this property through some extra effort, which has a minimal impact on efficiency.

Due to space constraints, we do not give the full details of this construction. The basic idea is
that we use a public-key cryptosystem, and include two public keys: one from the cryptosystem
and one from a verifiable random function. Then, instead of computing a = f(x), we compute
EPKe(x; a), that is, we encrypt a under the encryption public key, using a as the randomness. A
proof consists of a and the proof that a = f(x) was properly generated by the VRF. This may not
be pseudorandom, but in our construction it is sufficient to have unpredictability of the full answer,
and this construction does achieve that.

When we use this injective verifiable unpredictable function, we get a pseudonym function that
only has collisions when they are collisions of the hash function. Thus, any pseudonym collisions can
be worked around.

It is worth noting, however, that the properties of the Pedersen hash function are nice, yet we
are assuming in our (main) security proof that the hash function we use is a random oracle. In our
opinion, the nice properties of the Pedersen hash are worth having, and this will probably not cause
a significant security problem. However, we are unwilling to assume that the Pedersen hash function
is a random oracle.

Appendix E: Removing the random oracle assumption

If we are willing to assume certain conditions on the adversary, we can give a construction that is
secure without the random oracle assumption. The conditions are as follows:

– If the adversary first inquires about x in a database query, it may in the future ask for more
database queries about x as well as updates about x.

– If the adversary first inquires about x in an update query, it may only ask for more updates
about x in the future.

It may seem at first glance that we can assume this without loss of generality: any successful
adversary could always make more queries, and thus, make a database query immediately before
any update query so as to always comply with the conditions. The problem with this is that since
the simulation is actually a game of three parties: the adversary, the simulator, and the functionality
that provides pseudonyms, the simulator actually must interact with the functionality more than
normal to handle adversaries that don’t hold to these conditions, which means that the simulator
must learn more, which is not acceptable. It is important that in our simulation, the simulator not be
able to get any more information out of the pseudonym-providing functionality than the adversary
would.

Given that all adversaries meet these restrictions, we remove the random oracle assumption as
follows: Again, we use the pseudonym function H∗(x) = H(f(H(x))). To simulate, this time without
being able to control H as a random oracle, we do as follows: if x is a value that is first mentioned in a
database query, we actually compute H(f(H(x))). If x is a value that is first mentioned in an update
query, we know that the adversary will never make a database query about this particular x, so we
compute H∗(x) = H(R(N(x))) where R is a random function that we maintain, and where N(x)
is the pseudonym of x. If the adversary can distinguish between this simulator and a real adversary
then either the adversary managed to find an H-collision, (for example, if H(x) = H(x′), so the
adversary could detect this simulator by making a database query on x and then an update query
on x′, which should give the same pseudonym), or all inputs that should be given to f are distinct
between the two types, in which case, the probability of distinguishing is exactly the probability of
distinguishing the VRF from a random function.

We should note that although the restriction on the adversary is nontrivial, such adversaries still
represent a significant class of adversaries. What’s more, since we use the same construction here as
in Theorem 2, we have actually proved security of that construction in two different ways: one, with
the random oracle model, the other, with these restrictions on the adversary.

However, we can remove the random oracle model without weakening our assumptions if we
give up efficiency. Instead of using a VRF, we can simply commit to a key K for a PRP using a
commitment that becomes part of the database commitment, and then use fK(H(x)) as N(x), and
prove correctness of this using a general NIZK proof. The advantage of this is that the simulator can
fake NIZK proofs of false theorems, so the simulator can simply pretend that F (NP (x)) = fK(H(x))
where F is a random function, and fake proofs when necessary.

Appendix F: Efficiency improvements

Multi-pair updates

Suppose the database owner wants to update the database at n pairs simultaneously. A fairly obvious
method presents itself: make an update for each pair individually, and publish all the update informa-
tion together. This saves space, since some updated nodes will overlap. Asymptotically, the number
of nodes updated becomes O(n(k − log n)k), which represents some savings over the one-at-a-time
approach, which is asymptotically O(nk2).

Multi-proof updates

Suppose a proof owner has n proofs and an update is issued. If two proofs overlap (that is, N(x)
and N(x′) share a common prefix), the change in the updated proofs for x and x′ can be computed
more quickly by computing the change in the common portion of those two proofs together, then
computing the change in the remaining portion of each. More generally, if a user holds n proofs,
updating each separately would take time O(nk2), but by combining the work, this is reduced to
time O(n(k − log n)k).

The analysis for both of these methods is based on the observation that an average case instance
of n random strings will have the first log n bits in common with a newly chosen random string.
Thus, if each string translates to a path of length k, the expected sum of the length of all paths is
k + k − log 0 + . . . + k − log(n− 1) < nk − (n/2) log(n/2) = O(n(k − log n)). The additional factor
of k accounts for the length of the data per node.

