
Masking Based Domain Extenders for

UOWHFs: Bounds and Constructions

Palash Sarkar

Cryptology Research Group
Applied Statistics Unit

Indian Statistical Institute
203, B.T. Road

Kolkata 700108, India
palash@isical.ac.in

Abstract. We study the class of masking based domain extenders for
UOWHFs. Our first contribution is to show that any correct mask-
ing based domain extender for UOWHF which invokes the compression
UOWHF s times must use at least dlog2 se masks. As a consequence, we
obtain the key expansion optimality of several known algorithms among
the class of all masking based domain extending algorithms. Our second
contribution is to present a new parallel domain extender for UOWHF.
The new algorithm achieves asymptotically optimal speed-up over the
sequential algorithm and the key expansion is almost everywhere opti-
mal, i.e., it is optimal for almost all possible number of invocations of
the compression UOWHF. Our algorithm compares favourably with all
previously known masking based domain extending algorithms.
Keywords : UOWHF, domain extender, parallel algorithm.

1 Introduction

A universal one-way hash function (UOWHF) is a function family {hk}k∈K with
hk : {0, 1}n → {0, 1}m, for which the following task of the adversary is compu-
tationally infeasible: the adversary chooses an n-bit string x, is then given a k
chosen uniformly at random from K and has to find a x′ such that x 6= x′ and
hk(x) = hk(x

′). The notion of UOWHF was introduced in [9].
Intuitively, a UOWHF is a weaker primitive than a collision resistant hash

function (CRHF), since the adversary has to commit to the string x before
knowing the actual hash function hk for which a collision has to be found. In
fact, Simon [15] has shown that there is an oracle relative to which UOWHFs
exist but CRHFs do not exist. Further, as pointed out in [1], the birthday paradox
does not apply to the UOWHF and hence the message digest can be smaller.
Thus a construction for UOWHF may be faster than a construction for CRHF.

There is a second and perhaps a more important reason to prefer UOWHF
over CRHF. A protocol built using a UOWHF maybe “more” secure than a
protocol built using CRHF. The intuitive reason being that even if it is possible
to find a collision for a hash function, it might still be difficult to find a collision

185

for it when considered as a UOWHF. This situation is nicely summed up in [1]:
“Ask less of a hash function and it is less likely to disappoint!”

The important paper by Bellare and Rogaway [1] provides the foundation for
the recent studies on UOWHFs. They introduce the notion of domain extender
for UOWHF; show that the classical Merkle-Damg̊ard algorithm does not work
for UOWHFs; provide several new constructions for UOWHF domain extenders
and finally provide a secure digital signature scheme based on UOWHF in the
hash-then-sign paradigm.

The study in [1] shows that extending the domain usually requires an asso-
ciated increase in key length. One of the major new ideas behind their domain
extending algorithm is “masking” the outputs of intermediate invocations by
random strings. This idea of masking based algorithms have been later pur-
sued by several authors [14, 3, 13, 12, 8, 7]. We would like to point out that [1]
also presents other (i.e., non-masking type) techniques for domain extension.
However, the key expansion for these techniques is more than the masking type
techniques. Consequently, subsequent work, including the current one, have con-
centrated only on masking type domain extenders.

Our Contributions: The contribution of this paper is twofold.

We start by formalizing the class A of all masking based domain extending al-
gorithms. This class includes all known efficient domain extending algorithms [14,
3, 13, 12, 8, 7]. Any masking based algorithm in A proceeds by XORing the out-
put of any intermediate invocation of the compression UOWHF by a fixed length
bit string called a mask.

Suppose {hk}k∈K, hk : {0, 1}n → {0, 1}m is a compression UOWHF whose
domain is to be extended. Further, suppose that an algorithm in A makes s
invocations of hk (for some k ∈ K) and uses a total of ρ masks. In Proposition 1,
we show that the length of any string in the extended domain is n+(s−1)(n−m).
The resulting amount of key expansion is ρm and hence the key expansion is
totally determined by the number of masks.

Our main result on class A is to obtain a necessary condition for any algo-
rithm in A to be a correct domain extending algorithm. Using this necessary
condition, we obtain a non-trivial lower bound on the number of masks used
by any correct algorithm in A. More precisely, in Theorem 1, we show that
ρ ≥ dlog2 se. Based on this lower bound, we define the masking efficiency, ME

of an algorithm which uses ρ masks and makes s invocations of the compression
UOWHF to be ME = ρ−dlog2 se. In the case ME = 0, we say that the algorithm
achieves optimal masking. Our lower bound immediately shows the masking op-
timality of the sequential algorithm of Shoup [14] and the parallel algorithms
of [3, 7].

The basic unit of operation of a domain extending algorithm is one invocation
of the compression UOWHF. The number of operations made by any sequential
algorithm is equal to the number of invocations of the compression UOWHF. On
the other hand, in a parallel algorithm, several invocations of the compression
UOWHF is done in parallel and thus the number of parallel rounds will be
lower. Suppose an algorithm makes s invocations of the compression UOWHF

186

and uses Np processors to complete the computation in Nr rounds. Since there
are s invocations and Np processors, at least ds/Npe parallel rounds will be
required and hence Nr ≥ ds/Npe. We define the parellelism efficiency, PE to be
equal to s/Nr. In general, PE ≤ Np and in the case PE = Np we say that the
algorithm achieves optimal parallelism.

Our second contribution is to obtain a parallel domain extending algorithm.
The basic idea of the algorithm is to divide the input message into several parts,
hash each part separately and then combine the different parts using a binary
tree. This idea has already been suggested for collision resistant hash functions
by Damg̊ard in [2]. Our contribution is to add a suitable masking strategy. The
result is a simple and efficient parallel domain extending algorithm for UOWHF.
The masking efficiency ME is almost always zero and in very few cases it is one.
Hence we say that the masking efficiency of our algorithm is almost always
optimal. Further, the parallelism efficiency PE is asymptotically optimal. Thus
our algorithm provides a satisfactory parallel domain extender for UOWHF and
to a certain extent completes the line of research on obtaining efficient domain
extenders for UOWHFs which was started in [1].

Related Work: We have already mentioned that UOWHF was introduced by
Naor and Yung [9] and the important work done by Bellare and Rogaway [1].
There are several direct constructions of UOWHFs based on general assump-
tions [10, 4]. However, as noted in [1] these are not very efficient. Subsequent to
the work in [1], Shoup [14] described a nice domain extending algorithm which is
a modification of the Merkle-Damg̊ard construction. Shoup’s algorithm is a se-
quential algorithm and Mironov [6] proved that the algorithm achieves minimal
key length expansion among all sequential masking based domain extending al-
gorithms. (As opposed to this, our lower bound shows that Shoup’s algorithm is
optimal among all masking based domain extending algorithms.) Later work [13,
8, 3, 12, 7] have provided different parallel constructions of domain extending al-
gorithms with varying trade-off between degree of parallelism and key length
expansion. These are summarized in Tables 1 and 2.

We note that none of the previous constructions simultaneously achieve op-
timal parallelism and optimal key expansion. (In [7], it is claimed that their
algorithm achieves optimal parallelism. This claim is not correct: In [7], s = 2T

and the number of parallel rounds is Nr = T + 1. This requires Np = 2T−1 and
hence PE ≈ Np/ log2Np; as explained above, for optimal parallelism we should
have PE = Np.)

Note that the algorithms in [1, 13, 8, 7, 3] can also be executed with a fixed
number of processors by a level-by-level simulation of the large binary tree.
However, this simulation will require storing the results of all the invocations
at one level and hence will push up the memory requirement. In contrast, for
our algorithm, the required number of buffers is exactly equal to the number of
processors.

In [7], a sufficient condition for the correctness of any algorithm in A is
presented. Essentially, this condition states that, if, for any subtree, there is at
least one mask which occurs exactly once in that subtree, then the construction

187

Table 1. Comparison of masking efficiency. Here s is the number of invocations of the
compression UOWHF.

construction [1] [13] [8] [12] [14, 3, 7] ours

ME ≈ log2 s ≈ log2 log2 s O(log∗ s) const 0 0 or 1†

†: the value is almost always 0.

Table 2. Comparison of parallelism efficiency. Here Np is the number of processors.

construction [1, 13, 8, 7] [3] [12], ours

PE ≈
Np

log Np
≈ N

1−1/l
p , l const. ≈ Np

is correct. In contrast, our necessary condition states that for any correct con-
struction, for any subtree, there must be at least one mask which occurs an odd

number of times. Though these two combinatorial conditions are close, they are
not the same and they have not yet been proved to be equivalent. In fact, it is
also possible that they cannot be proved to be equivalent.

Our necessary condition yields a tight lower bound on the number of masks,
whereas the sufficient condition in [7] is used to verify the correctness of some
previous constructions. However, it is not easy to apply the sufficient condition
of [7] to prove the correctness of the construction in [12] and the construction
presented here. On the other hand, for small examples, it is possible to verify
that both the construction in [12] and the one presented here satisfy the sufficient
condition of [7]. Thus our necessary condition and the sufficient condition of [7]
are actually different and are of separate interest. It could be an interesting
research problem to obtain a single necessary and sufficient condition for correct
domain extension for any algorithm in A.

The rest of the paper is organized as follows. In Section 2, we describe the
necessary preliminaries. In Section 3, we describe the formal model for masking
based domain extenders and study its properties. In this section, we also obtain
the necessary condition and the lower bound on the number of masks. The new
construction of a parallel domain extending algorithm is described in Section 4.
Finally, Section 5 concludes the paper. Due to lack of space, most of the proofs
are omitted. These can be found in the full version of the paper and in the
technical report [11].

2 Preliminaries

All logarithms in this paper are to the base 2. The notation x ∈r A denotes
the (uniformly at) random choice of the element x from the set A. Also λ

denotes the empty string. By an (n,m) function f we will mean a function
f : {0, 1}n → {0, 1}m. A formal definition for UOWHF is given in [9]. In this pa-
per we will be interested in “securely” extending the domain of a given UOWHF.

188

Our proof technique will essentially be a reduction. We formalize this as a re-
duction between two suitably defined problems.

Let F = {hk}k∈K be a keyed family of hash functions, where each hk is an
(n,m) function, with n > m. Consider the following adversarial game G(F) for
the family F.

1. Adversary chooses an x ∈ {0, 1}n.
2. Adversary is given a k which is chosen uniformly at random from K.
3. Adversary has to find x′ such that x 6= x′ and hk(x) = hk(x

′).

The problem G(F)-UOWHF for the family F is to win the game G(F).

A strategy A for the adversary runs in two stages. In the first stage Aguess,
the adversary finds the x to which he has to commit in Step 1. It also produces
some auxiliary state information state. In the second stage Afind(x, k, state), the
adversary either finds a x′ which provides a collision for hk or it reports fail-
ure. Both Aguess and Afind(x, k, state) are probabilistic algorithms. The success
probability of the strategy is measured over the random choices made by Aguess

and Afind(x, k, state) and the random choice of k in Step 2 of the game. We say
that A is an (ε, q)-strategy for G(F)-UOWHF if the success probability of A is
at least ε and it invokes some hash function from the family F at most q times.
Informally, we say that F is a UOWHF if there is no “good” winning strategy
for the game G(F).

In this paper, we are interested in extending the domain of a UOWHF.
Let F = {hk}k∈K, where each hk is an (n,m) function. For i ≥ 1, let ni =
n+ (i− 1)(n−m). Define F0 = F and for i > 0, define Fi = {Hpi

}pi∈Pi
, where

each Hpi
is an (ni,m) function. The family Fi is built from the family F. In fact,

as shown in Proposition 1, a function in Fi is built using exactly i invocations
of some function in F.

We consider the problem G(Fi)-UOWHF. We say that the adversary has
an (ε, q)-strategy for G(Fi)-UOWHF if there is a strategy B for the adversary
with probability of success at least ε and which invokes some hash function from
the family F at most q times. Note that Fi is built using F and hence while
studying strategies for G(Fi) we are interested in the number of invocations of
hash functions from the family F.

The correctness of our construction will essentially be a Turing reduction. We
will show that if there is an (ε, q)-strategy for G(Fi), then there is an (ε1, q1)-
strategy for Fi, where ε1 is not “significantly” less than ε and q1 is not “signif-
icantly” more than q. In fact, we will have ε1 = ε/i and q1 = q + 2i. Since Fi
invokes a hash function from F a total of i times, we “tolerate” a reduction in
success probability by a factor of 1/i. (This is also true for other constructions
such as in [1].) The intuitive interpretation of the reduction is that if F is a
UOWHF then so is Fi for each i ≥ 1.

The key length for the base hash family F is dlog |K|e. On the other hand,
the key length for the family Fi is dlog |Pi|e. Thus increasing the size of the
input from n bits to ni bits results in an increase of the key size by an amount
dlog |Pi|e − dlog |K|e.

189

3 Lower Bound on Key Expansion

In this section, we consider the problem of minimising the key expansion while
securely extending the domain of a UOWHF. More precisely, we are interested in
obtaining a lower bound on key length expansion. Obtaining a complete answer
to this problem is in general difficult. Thus we adopt a simpler approach to
the problem. We fix a class of possible domain extending algorithms and obtain
a lower bound on key expansion for any algorithm in this class. (Note that
in computer science, this is the usual approach for proving lower bounds on
algorithmic problems. For example, the lower bound of O(n log n) for sorting n
elements is obtained for the class of all comparison based algorithms.)

The usefulness of our lower bound depends on the class of algorithms that
we consider. The class that we consider consists of all masking based domain
extending algorithms. (We make this more precise later.) All previously known
masking based algorithms [1, 14, 13, 12, 8, 3, 7] belong to this class. We consider
this to be ample evidence for the usefulness of our lower bound. However, we
would like to point out that our lower bound does not hold for any domain ex-
tending algorithm. Thus it might be possible to achieve lower key expansions.
However, any such algorithm must adopt an approach which is different from
masking based algorithms. One possible approach could be to develop the tech-
nique of using separate keys for the compression functions (see [1]).

Let F = {hk}k∈K, where each hk is an (n,m) function. We are interested in
the class A of masking based domain extension algorithms. We do not want the
algorithm to be dependent on the structure of the UOWHF; in fact it should
work for all UOWHF’s which can “fit” into the structure of the algorithm. Any
algorithm A ∈ A behaves in the following manner.

1. It invokes some function hk ∈ F a finite number of times.
2. The outputs of all but one invocation of hk() is masked by XORing with

an m-bit string selected from the set {µ0, . . . , µρ−1}.
3. The invocations of hk() whose outputs are masked are called intermediate

invocations and the invocation whose output is not masked is called the
final invocation.

4. The entire output of any intermediate invocation is fed into the input of
exactly one separate invocation of hk().

5. Each bit of the message x is fed into exactly one invocation of hk().
6. The output of the final invocation is the output of A.

We emphasize that all previously known masking based algorithms [1, 14, 13, 12,
8, 3, 7] belong to A. In the following we make a general study of any algorithm
in A, with particular emphasis on obtaining a lower bound on key expansion
made by any algorithm in A.

Proposition 1. Let A ∈ A be such that A invokes hk() a total of s times.

Then the length of the message which is hashed is equal to n+ (s− 1)(n−m).

Thus the number of invocations of hk() and the parameters n and m deter-
mine the length of the message to be hashed irrespective of the actual structure

190

of the algorithm. Hence any algorithm A ∈ A which invokes hk() a total of s

times defines a family F(A,s) = {H
(A,s)
p }p∈P , where P = {0, 1}|k|+mρ and each

H
(A,s)
p is an (n + (n −m)(s − 1),m) function. The structure of any algorithm

A ∈ A which makes s invocations of hk() is described by a labelled directed
graph DA

s = (Vs, Es, ψs), where

1. Vs = {v1, . . . , vs}, i.e., there is a node for each invocation of hk().
2. (vi, vj) ∈ Es if and only if the output of the ith invocation is fed into the

input of the jth invocation.
3. ψs is a map ψ : Es → {µ0, . . . , µρ−1}, where ψ(vi1 , vi2) = µj if the output

of the i1-th invocation of hk() is masked using µj .

The nodes corresponding to the intermediate invocations are called intermedi-
ate nodes and the node corresponding to the final node is called the final node.
Without loss of generality we assume the final node to be vs. Nodes with inde-
gree zero are called leaf nodes and the others are called internal nodes. Define
δ(DA

s) = max{indeg(v) : v ∈ Vs}. We call δ(DA
s) to be the fan-in of algorithm A

for s invocations.

Proposition 2. The outdegree of any intermediate node in DA
s is 1 and the

outdegree of the final node is 0. Hence there are exactly (s − 1) arcs in DA
s .

Consequently, DA
s is a rooted directed tree where the final node is the root of

DA
s .

Proposition 3. If δ = δ(DA
s), then n ≥ δm.

Thus an algorithm A with fan-in δ cannot be used with all UOWHFs. The
value of fan-in places a restriction on the values of n and m. However, given this
restriction the actual structure of DA

s does not depend on the particular family
F.

Let T be a non-trivial subtree of DA
s . Denote by vecψ(T) the ρ-tuple

(numµ0
(T) mod 2, . . . , numµρ−1

(T) mod 2),

where numµi
(T) is the number of times the mask µi occurs in the tree T . We

say that DA
s is null-free if vecψ(T) 6= (0, . . . , 0) for each non-trivial subtree of

DA
s .

We now turn to the task of obtaining a lower bound on key expansion made
by any algorithm A in A. This consists of two tasks. Firstly, we show that for any
“correct UOWHF preserving domain extender” A which invokes some function
from the compression UOWHF exactly s times, the DAG DA

s must be null-free.
This translates the problem into a combinatorial one. Our second task is to use
use this combinatorial property to obtain the required lower bound.

The intuitive idea behind the first part is as follows. GivenDA
s and a family F′

with suitable parameters, we construct a family F such that if F′ is a UOWHF,
then so is F. Then we extend the domain of F using DA

s to obtain the family
F(A,s) and show that if DA

s is not null-free then it is possible to exhibit a collision
for every function in F(A,s). Now we argue as follows. If F′ is a UOWHF and

191

A is correct for s invocations, then F(A,s) must also be a UOWHF and hence
DA
s must be null-free. This intuitive argument is now formalized in terms of

reductions.
Let A ∈ A and DA

s be the DAG corresponding to s invocations of the
compression family by A. We set δ = δ(DA

s). Let F′ = {h′k}k∈K where each h′

is an (n,m′) function with K = {0, 1}K, m = m′ +K and n = δm+ δ + 1. For
z ∈ {0, 1}n write

z = z1,1||z1,2||z2,1||z2,2|| . . . ||zi,1||zi,2|| . . . ||zδ,1||zδ,2||y||b

where |zi,1| = m, |zi,2| = K for 1 ≤ i ≤ δ, |y| = δ and b ∈ {0, 1}. We write
y = y(z) and b = b(z) to show the dependence of y and b on z. Given z ∈ {0, 1}n,
define KLst = {z1,2, z2,2, z3,2, . . . , zδ,2}. Given z ∈ {0, 1}n and k ∈ K, define a
Boolean function φ(z, k) to be true (T) if and only if k =

⊕

w∈S w for some
∅ 6= S ⊆ KLst(z). We define the family of functions F = {hk}k∈K, where each
hk is an (n,m) function in the following manner.

hk(z) = h′k(z)||k if b = 1 and φ(z, k) = F;
= h′k(z)||0

K if b = 0, y = 0δ and φ(z, k) = F;
= h′k(z)||Sy if b = 0, y 6= 0δ and φ(z, k) = F;
= 1m φ(z, k) = T.

(1)

Here y = y(z) and Sy = ⊕yi=1zi,2, i.e., the XOR’s of the zi,2’s for which the ith
bit of y is 1.

Proposition 4. Suppose there is an (ε, q)-strategy for G(F). Then there is an

(ε− 1
2K , q)-strategy for G(F′).

Intuitively, this means that if F′ is a UOWHF, then so is F. In the next result
we show that if DA

s is not null-free, then it is possible to exhibit a collision for
each function in F(A,s).

Lemma 1. Let A ∈ A and F be defined as in (1). For s > 0, let F(A,s)

be the family obtained by extending the domain of F using DA
s . If DA

s is not

null-free, then it is possible to define two strings x, x′ such that x 6= x′ and

H
(A,s)
p (x) = H

(A,s)
p (x′) for any H

(A,s)
p ∈ F(A,s),

We now translate Lemma 1 into a lower bound on the number of masks.

Definition 1. Let T1 = (V1, E1) and T2 = (V2, E2) be two subtrees of DA
s . We

denote by T1∆T2 the subtree of DA
s induced by the set of arcs E1∆E2, where

E1∆E2 is the symmetric difference between E1 and E2.

Definition 2. Let F be a family of non-trivial subsets of DA
s such that for any

T1, T2 ∈ F , the tree T1∆T2 is also a non-trivial subtree of DA
s . We call F a

connected family of DA
s .

Lemma 2. Let DA
s be null-free and let F be a connected family of DA

s . Then

1. For any T ∈ F , vecψ(T) 6= (0, . . . , 0).
2. For any T1, T2 ∈ F , vecψ(T1) 6= vecψ(T2).

192

Consequently, 2ρ − 1 ≥ |F| or equivalently ρ ≥ dlog2(|F| + 1)e, where ρ is the

number of masks used by A for s invocations.

Lemma 2 provides a lower bound on the number of masks in terms of sizes
of connected families. Thus the task is to find a connected family of maximum
size in DA

s . We show the existence of a connected family of size (s − 1) in DA
s .

For each intermediate node v ∈ DA
s , let Pv be the path from v to the final node

of DA
s . Define F = {Pv : v is an intermediate node in DA

s }. It is easy to check
that F is a connected family of size (s− 1). Hence we have the following result.

Theorem 1. Let s > 0 and A ∈ A be correct for s invocations. Then the

number of masks required by A is at least dlog2 se.

The bound in Theorem 1 is tight since Shoup’s algorithm [14] meets this bound
with equality. This also shows that Shoup’s algorithm is optimal for the class
A . Also we would like to point out that the lower bound of Theorem 1 can be
improved for particular algorithms.

Lemma 3. Suppose DA
s is the full binary tree on s = 2t − 1 nodes. If t = 2,

there is a connected family of size 3 in DA
s and for t ≥ 3, there is a connected

family of size 5 × 2t−2 − 2 in DA
s . Consequently, ρ ≥ 2 for t = 2 and ρ ≥ t + 1

for t ≥ 3.

4 New Construction

For t > 0, let Tt be the binary tree defined as Tt = (Vt = {P0, . . . , P2t−2}, At),
where At = {(P2j+1, Pj), (P2j+2, Pj) : 0 ≤ j ≤ 2t−1−2}. The underlying digraph
for our algorithm is a binary tree with sequential paths terminating at the leaf
nodes of the tree. We define a digraph Gt,i which consists of the full binary tree
Tt alongwith a total of i nodes on the sequential paths. The precise definition of
Gt,i = (Vt,i, At,i) is

Vt,i = Vt ∪ {Q0, . . . , Qi−1}
At,i = At ∪ {(Qj , P2t−1+j−1) : 0 ≤ j ≤ 2t−1 − 1}

∪ {(Qj , Qj−2t−1) : 2t−1 ≤ j ≤ i− 1}.

(2)

The total number of nodes in Gt,i is equal to 2t−1+ i, where 2t−1 nodes are in
the binary tree part and i nodes are in the sequential part. We define parameters
rt,i and st,i (or simply r and s) in the following manner: If i = 0, then r = s = 0;
if i > 0, then r and s are defined by the equation:

i = r2t−1 + s (3)

where s is a unique integer from the set {1, . . . , 2t−1}. For i > 0, we can write
i = (r + 1)× s+ (2t−1 − s)r. Thus in Gt,i there are s sequential paths of length
(r + 1) each and these terminate on the left most s leaf nodes of Tt. There are
also (2t−1−s) sequential paths of length r each and these terminate on the other
(2t−1 − s) leaf nodes of Tt. Figure 1 shows G4,19.

193

We define ρt,i or (simply ρ) to be the maximum length (counting only Q
nodes) of a path from a Q-node to a P -node. Hence ρ = 0 if i = 0 and ρ = r+1
if i > 0.

When i = 0, Gt,i is simply the full binary tree Tt and when t = 1, Gt,i is a
dipath of length r + 1. These are the two extreme cases – one leading to a full
binary tree and the other leading to a single dipath. In practical applications,
t will be fixed and there will be “long” dipaths terminating on the leaf nodes
of Tt. For implementation purpose, the number of processors required is 2t−1.
Hence for practical applications, the value of t ≤ 5.
Remark: The idea of breaking a message into parts, hashing them indepen-
dently and finally combining the outputs is present in Damg̊ard [2] in the context
of collision resistant hash functions. The current construction can be seen as a
development of the “UOWHF version” of this idea.

4.1 Notation

We define a few notation for future reference.

1. t is the number of levels in the binary tree Tt.
2. i is the total number of nodes in the sequential part of the algorithm.
3. r and s are as defined in (3).
4. ρ = 0 if i = 0 and ρ = r + 1 if i > 0.
5. N = 2t − 1 + i is the total number of nodes in Gt,i.
6. For U ∈ Vt,i, define nodenum(U) = j if U = Pj and

nodenum(U) = j + 2t − 1 if U = Qj .
7. For U ∈ Vt,i, we say that U is a P -node (resp. Q-node) if U = Pj

(resp. U = Qj) for some j.

For U ∈ Vt,i, we define indeg(U) (resp. outdeg(U)) to be the indegree (resp.
outdegree) of U . Note that other than P0 each node U has outdeg(U) = 1. Thus
for each node U 6= P0 there is a unique out neighbour.

The concept of level is defined in the following manner. There are L = ρ+ t
levels in Gt,i and the level number of each node is defined as follows.

level(Pj) = L− 1 − j1 if 2j1 − 1 ≤ j ≤ 2j1+1 − 2 and 0 ≤ j1 ≤ t− 1;
level(Qj) = ρ− j1 − 1 if j12

t−1 ≤ j ≤ (j1 + 1)2t−1 − 1 and 0 ≤ j1 ≤ r − 1;
level(Qj) = 0 if r2t−1 ≤ j ≤ r2t−1 + s.

(4)

Note that if ρ = 0, there are no Q-nodes and hence the level numbers of Q-
nodes are not defined. The root node of Tt has the highest level. Nodes with
indegree zero can be at levels zero and one. Let U ∈ Vt,i and j = nodenum(U):
If 0 ≤ j ≤ 2t−1 − 2 then we define lchild(U) = P2j+1 and rchild(U) = P2j+2; if
2t−1 − 1 ≤ j ≤ N − 1, then we define predecessor of U in the following manner:

pred(U) = Qj+2t−1 if 2t−1 − 1 ≤ j ≤ 2t−1 + i− 2;
= NULL if 2t−1 + i− 1 ≤ j ≤ N − 1;

}

(5)

For a node U , pred(U) = NULL implies that the indegree of U is zero.

194

4.2 Mask Assignment Algorithm

There are two disjoint sets of masks {α0, . . . , αl−1} and {β0, . . . , βt−2} where
l = dlog(ρ+ t)e. The mask assignment

ψ : At,i → {α0, . . . , αl−1} ∪ {β0, . . . , βt−2}.

is a function from the set of arcs of Gt,i to the set of masks. The definition of ψ
is as follows: Let (U, V) ∈ At,i with level(U) = j − 1 and level(V) = j for some
j ∈ {1, . . . , L− 1}.

• If ((U is a Q-node) or (U is a P -node and U = lchild(V))),
then ψ(U, V) = αν(j).

• If (U is a P -node and U = rchild(V)) then ψ(U, V) = βj−(ρ+1).

Here ν(j) is defined to be the non negative integer j1 such that 2j1 |j and 2j1+1 6 |j.
Also for the convenience of notation we write ψ(U, V) instead of ψ((U, V)). The
mask assignment for G4,19 is shown in Figure 1.

4.3 Optimality of Mask Assignment

The total number of masks used is equal to t − 1 + dlog(ρ + t)e. The total
number of nodes in Gt,i is equal to N = 2t − 1 + i. Using Theorem 1, at least
Lt,i = dlog(2t − 1 + i)e masks are required by any algorithm in class A. Our
algorithm requires Rt,i = t − 1 + dlog(ρ + t)e masks. Define Dt,i = Rt,i − Lt,i.
We study Dt,i.

Proposition 5.

Dt,i = 0 if i = 0 and t = 1;
= dlog te − 1 if i = 0 and t > 1;
= dlog(r + 1 + t)e −

⌈

log
(

r + 2 + s−1
2t−1

)⌉

if i > 0.

(6)

Furthermore, Dt,i = 0 if and only if either t = 1; or (t = 2 and i = 0); or

2j − 1 − d(s− 1)/2t−1e ≤ r ≤ 2j+1 − t− 1 for some j > 0.

For t = 1, the mask assignment algorithm reduces to the mask assignment
algorithm of Shoup [14] and for i = 0, the mask assignment algorithm reduces
to the mask assignment algorithm of Sarkar [13]. Hence we concentrate on the
case t > 1 and i > 0. For practical parallel implementation, the value of t will
determine the number of processors and will be fixed whereas the value of i can
grow in an unbounded manner.

Suppose 2τ−1 < t− 1 ≤ 2τ . For j ≥ 0, define two intervals of integers in the
following manner:

Ij = {2τ+j − 1 −
⌈

s−1
2t−1

⌉

, 2τ+j −
⌈

s−1
2t−1

⌉

, . . . , 2τ+j+1 − t− 1};
Jj = {2τ+j+1 − t, 2τ+j+1 − t+ 1, . . . , 2τ+j+1 − 2 −

⌈

s−1
2t−1

⌉

}.

}

(7)

Clearly, |Ij | = 2τ+j − t + 1 +
⌈

(s− 1)/2t−1
⌉

, |Jj | = t − 1 −
⌈

(s− 1)/2t−1
⌉

and
|Ij | + |Jj | = 2τ+j .

195

e e e

e e e e e e e e

e e e e e e e e

e e e e e e e e

e e e e

e e

e

6 6 6

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6

�
�
�
���

�
�
�
���

�
�
�
���

�
�
�
���

B
B

B
BBM

B
B

B
BBM

B
B

B
BBM

B
B
B

BBM
�

�
�

��7

�
�

�
��7

S
S

S
SSo

S
S

S
SSo

�
�

�
�

�
�

�
�

��7

S
S

S
S

S
S

S
S

SSo

α0 α0 α0

α0 α0 α0 α0 α0 α0 α0 α0

α0 α0

α1 α1 α1 α1 α1 α1 α1 α1

α1

α2 α2 α2 α2β0 β0 β0 β0

β1 β1

β2

Q16 Q17 Q18

Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

P7 P8 P9 P10 P11 P12 P13 P14

P3 P4 P5 P6

P1 P2

P0

level 0

level 1

level 2

level 3

level 4

level 5

level 6

Fig. 1. Example of mask assignment for t = 4 and i = 19.

Theorem 2. Suppose i > 0, 2τ−1 < t− 1 ≤ 2τ and for j ≥ 0, Ij and Jj are as

defined in 7. Then Dt,i = 0 if r ∈ Ij ; and Dt,i = 1 if r ∈ Jj .

From Theorem 2, it follows that for j ≥ τ , in any interval 2j + 1 ≤ r ≤ 2j+1,
there are exactly t−1−d(s−1)/2t−1e points where the algorithm is suboptimal
with respect to the lower bound. Moreover, at these points it requires exactly
one extra mask over the lower bound. In any practical parallel implementation,
the value of t will be fixed, whereas the value of r will grow. In such a situation,
the ratio 1

2j (t− 1− d(s− 1)/2t−1e) approaches zero very fast and hence we can
say that for t ≥ 2, the algorithm achieves optimal key length expansion almost

everywhere. (Note that for t = 1, the algorithm reduces to Shoup’s algorithm
and hence achieves optimal key length expansion.)

4.4 Computation of Message Digest

Let {hk}k∈K, where each hk is an (n,m) function, be the compression UOWHF
whose domain is to be extended. For t > 1, we require n ≥ 2m. The nodes

196

of Gt,i represent the invocations of hk. Thus hk is invoked a total of N times.
The output of P0 is provided as output digest, whereas the outputs of all the
other nodes are used as inputs to other invocations as defined by the arcs of
Gt,i. Using Proposition 1 of [12] we obtain the following: Suppose a message x is
hashed using Gt,i and the compression UOWHF {hk}k∈K, where each hk is an
(n,m) function. Then |x| = N(n−m) +m.

Thus {hk}k∈K is extended to {H
(t,i)
p }p∈P where each H

(t,i)
p is an (N(n −

m) +m,m) function and

p = k||α0|| . . . ||αl−1||β0|| . . . ||βt−2.

The message x of length N(n−m)+m has to be formatted into small substrings
and provided as input to the different invocations of hk. Write x = x0|| . . . ||xN−1,
where the lengths of the xj ’s are as follows.

|xj | = n− 2m if 0 ≤ j ≤ 2t−1 − 2;
= n−m if 2t−1 − 1 ≤ j ≤ 2t−1 + i− 2;
= n if 2t−1 + i− 1 ≤ j ≤ 2t + i− 2.

(8)

The substring xj is provided as input to node U with nodenum(U) = j and the
m-bit output of U is denoted by zj . The outputs z1, . . . , zN−1 are masked using
the α and β masks to obtain m-bit strings y1, . . . , yN−1 in the following manner.

yj = zj ⊕ ψ(U, V) if nodenum(U) = j. (9)

The inputs to the invocations of hk are formed from the x’s and the y’s in
the following manner. There are N invocations whose inputs are denoted by
w0, . . . , wN−1 and are defined as follows.

wj = xj ||y2j+1||y2j+2 if 1 ≤ j ≤ 2t−1 − 2;
= xj ||yj+2t−1 if r > 0 and 2t−1 − 1 ≤ j ≤ 2t−1 + i− 2;
= xj if 2t−1 + i− 1 ≤ j ≤ 2t + i− 2.

(10)

Note that the length of each wj is n and hence we can invoke hk on wj for all
j ∈ {0, . . . , N − 1}. For any node U ∈ Vt,i we define x(U), y(U) and w(U) to be
the x, y and w strings associated to the node U as defined respectively in (8), (9)
and (10). Similarly the output of node U will be denoted by z(U).

Now we are ready to describe the digest computation algorithm. Most of the
work has already been done, so that the description of the algorithm becomes
simple. Suppose the compression UOWHF is {hk}k∈K. We describe the digest

computation of H
(t,i)
p (x).

Algorithm to compute H(t,i)(x)

1. for j = 0 to L− 1 do
2. for all U with level(U) = j do in parallel
3. compute z(U) = hk(w(U));
4. end do;
5. end do;
6. return z0.

197

5 Conclusion

In this paper, we have formalized the model for masking based domain extending
algorithms. Using this formal model, we obtained a lower bound on the minimum
amount of key expansion required by any masking based algorithm. Our second
contribution has been to develop a simple and efficient parallel domain extender.
The key expansion of our algorithm is almost everywhere optimal whereas the
efficiency of parallelism is asymptotically optimal.

References

1. M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs
practical. Proceedings of Crypto 1997, pp 470–484.

2. I. B. Damg̊ard. A design principle for hash functions. Proceedings of Crypto 1989,
Lecture Notes in Computer Science, volume 435 (1990), 416–427.

3. W. Lee, D. Chang, S. Lee, S. Sung and M. Nandi. New Parallel Domain Extenders
for UOWHF. Proceedings of Asiacrypt 2003, Lecture Notes in Computer Science,
pp 208–227.

4. R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes provably as secure
as subset sum. Journal of Cryptology, volume 9, number 4, 1996.

5. R. C. Merkle. One way hash functions and DES. Proceedings of Crypto 1989,
Lecture Notes in Computer Science, volume 435, 1990, pp 428–226.

6. I. Mironov. Hash functions: from Merkle-Damg̊ard to Shoup. Proceedings of Eu-

rocrypt 2001, Lecture Notes in Computer Science, volume 2045 (2001), Lecture
Notes in Computer Science, pp 166–181.

7. M. Nandi. Optimal Domain Extension of UOWHF and a Sufficient Condition.
Proceedings of SAC 2004, Lecture Notes in Computer Science, to appear.

8. M. Nandi. A New Tree based Domain Extension of UOWHF, Cryptology e-print
archive, Report No. http://eprint.iacr.org, 2003/142.

9. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
aplications. Proceedings of the 21st Annual Symposium on Theory of Computing,
ACM, 1989, pp. 33–43.

10. J. Rompel. One-way functions are necessary and sufficient for digital signatures.
Proceedings of the 22nd Annual Symposium on Theory of Computing, ACM, 1990.

11. P. Sarkar. Masking Based Domain Extenders for UOWHFs: Bounds and Construc-
tions, Cryptology e-print archive, http://eprint.iacr.org, Report No. 2003/225.

12. P. Sarkar. Domain Extenders for UOWHFs: A Finite Binary Tree Algorithm,
Cryptology e-print archive, http://eprint.iacr.org, Report No. 2003/009.

13. P. Sarkar. Construction of UOWHF: Tree Hashing Revisited, Cryptology e-print
archive, http://eprint.iacr.org, Report No. 2002/058.

14. V. Shoup. A composition theorem for universal one-way hash functions. Proceed-

ings of Eurocrypt 2000, pp 445–452, 2000.
15. D. Simon. Finding collisions on a one-way street: Can secure hash function be

based on general assumptions?, Proceedings of Eurocrypt 1998, Lecture Notes in
Computer Science, pp 334–345, 1998.

16. D. R. Stinson. Some observations on the theory of cryptographic hash functions.
http://www.cacr.math.uwaterloo.ca/~dstinson/papers/newhash.ps.

