
A New Attack Against Khazad

Frédéric Muller

DCSSI Crypto Lab, 18 rue du Docteur Zamenhof
F-92131 Issy-les-Moulineaux Cedex, France

Frederic.Muller@m4x.org

Abstract. Khazad is a new block cipher initially proposed as a can-
didate to the NESSIE project. Its design is very similar to Rijndael,
although it is a 64-bit block cipher. In this paper, we propose a new
attack that can be seen as an extension of the Square attack. It takes
advantage of redundancies between the round key derivation and the
round function, and also exploits some algebraic observations over a few
rounds. As a result, we can break 5 rounds of Khazad faster than ex-
haustive key search. This is the best known cryptanalytic result against
Khazad.

1 Introduction

Many recent block ciphers are built using an iterative Substitution Permutation
Network (SPN). This includes in particular Shark [14], Square [5], Rijndael [6],
Anubis [1] or Khazad [2]. These ciphers are generally designed to be immune
against differential and linear cryptanalysis. However, a new powerful class of
attack has emerged recently, the “Square” attack which was initially a dedicated
attack [5] against the Square block cipher. It takes advantage of the bijectivity
of most components of these ciphers (S-box, round key addition, . . .), without
analyzing their precise behavior. More generally, this class of high-level attacks
can be seen as a dual technique to differential and linear cryptanalysis since it
is based on the propagation of distributions along the cipher for a large set of
plaintexts, rather than on statistical properties for a single plaintext (or a pair
of plaintexts).

Since then, this technique has been successfully applied to many other block
ciphers (see [3] and [8]). Currently, one of the best known attacks against Rijn-
dael is Gilbert-Minier’s collision attack on 7-rounds [9] which can also be seen
as an extension of the “Square” attack. Besides, a more generic name for this
technique, namely the “integral” attack has been recently proposed [10]. We use
this terminology in the present paper.

Khazad is a 64-bit SPN block cipher with 8 rounds. It offers several interesting
features. First, it achieves full diffusion over one round using an MDS matrix
layer. Furthermore, all components are involution, so the only difference between
encryption and decryption lies in the key scheduling. Thus the same security is
expected in both directions.

Khazad was initially proposed as a NESSIE [11] candidate for 64 bits block
cipher. However, it was not selected due to his low security margin [12]. In the
Section 2, we provide some background about Khazad. Then, in Section 3 we
present new observations about this cipher that we later exploit to mount a
5-round attack.

2 Some background about Khazad

Khazad is a byte-oriented cipher. Indeed, all operations handle bytes of data:
S-box, linear application over GF(28), Like most word-oriented ciphers,
Khazad may thus be subject to integral attacks. First, we describe quickly the
main components of Khazad, then we present previously known cryptanalytic
results against this cipher.

2.1 Description of the cipher

We only give a short overview of Khazad. More details can be found in [2].
During encryption, it iterates 8 times a SP round function. Throughout this
paper, we denote by P its linear layer and S its S-box layer. Thus, each round
consists, in this particular order, of

– a S layer where a fixed S-box is applied to each byte of the current state.
– a P layer which consists of a square matrix in GF (28) of size 8
– a XOR layer, using the corresponding round subkey. This layer is called Xi

at round number i.

A first XOR layer is applied prior to the first round. Besides, the last round does
not include a matrix layer. Thus the full encryption function can be written as

(X8 ◦ S) ◦ (X7 ◦ P ◦ S) ◦ · · · ◦ (X1 ◦ P ◦ S) ◦X0

By convention, the notation “0.5 round” denotes either the first two layers of the
round (the S and P layers together), or the XOR layer alone.

2.2 Previous Results about Khazad

All cryptographic results concerning Khazad are summarized in Table 1. The
best known attack so far was the straightforward application of the integral
attack, originally proposed by the designers of the cipher [2]. Indeed, if a set of
256 plaintexts is introduced, such that the first byte takes all 256 possible values
while other bytes have constant values, distributions for each byte can be easily
described over 2 rounds (see Figure 1). For each byte, the following notations
are used to represent these distributions over this set of 256 plaintexts

– A represents bytes where “All” possible values are represented exactly once.
– C represents bytes which have a “Constant” value
– S represents bytes where the “Sum” of all values is 0.

A C C C C C C C

1 round

1 round

A A A A A A A A

S S S S S S S S

Fig. 1. The straightforward integral attack

From Figure 1, it appears that all bytes have a S distribution after 2 rounds.
Such balanced distributions provide a 2-round distinguisher. Since there is no
matrix layer in the last round, the corresponding subkey bytes can be guessed
separately to mount a 3-rounds attack against Khazad. The resulting complexity
is roughly 216 S-box lookups and 29 chosen plaintexts. Besides, this attack can
be directly extended to 4 rounds by guessing one additional subkey. This increase
the time complexity by a factor 264.

Other attacks have been examined throughout the NESSIE evaluation pro-
cess. An impossible differential attack exists on 3 rounds of Khazad but its com-
plexity is larger than the integral attack [12]. The design rationale apparently
prevents differential and linear attacks since a large number of S-boxes is acti-
vated at each round. Besides, Gilbert-Minier’s attack on Rijndael does not apply
very well here, since it requires partial collision. New ideas to attack involutional
ciphers have been recently proposed [4]. Indeed the cycle structure of 5-rounds
Khazad presents some surprising properties. However these observations do not
result yet on a concrete attack. Finally, the only cryptanalytic result on 5-rounds
Khazad is the class of 264 weak keys identified in [4] which can be broken with
243 steps of analysis using 238 encryption blocks.

Type of Attack Rounds Time Data
integral attack [2] 3 216 29

impossible differential [12] 3 264 213

integral attack [2] 4 280 29

weak keys [4] 5 243 238

improved integral (this paper) 5 291 ' 264

Table 1. Summary of Known Attacks Against Khazad

3 New Observations on Khazad

In this Section, we investigate some properties of Khazad. Our first observations
concern the key scheduling, which is a Feistel network based on the round func-
tion. We show some surprising weaknesses resulting from this redundancy. Then,
we describe some algebraic properties of the cipher over a reduced number of
rounds.

3.1 Redundancies in the Round Key Derivation

In order to speed up Khazad while keeping the same security, its designers
adopted a key scheduling that inherits many properties of the round function.
While this key scheduling can be viewed as a simple Feistel network, the deriva-
tion of the i-th round key Ki is basically just one round of encryption applied
to Ki−1, with a particular XOR layer. Initially, the actual 128 bits of secret key
are splitted into K−1 and K−2 which serve as initial values. Thus, we have the
following relation, for 0 ≤ i ≤ 8,

Ki = P ◦ S(Ki−1)⊕ Ci ⊕Ki−2 (1)

where the Ci’s are round constants. The use of the round function during key
scheduling creates surprising cascade eliminations during encryption. To illus-
trate this, we consider encryption of the plaintext

Plain = K0 ⊕ S ◦ P (0)

which depends only on the first subkey K0. After 1 round, the internal value
(denoted as Iv1) is

Iv1 = K1 ⊕ P ◦ S(Plain⊕K0)
= K1 ⊕ P ◦ S ◦ S ◦ P (0)
= K1

since P and S are involution. Then, after the second round, the internal value
Iv2 is

Iv2 = K2 ⊕ P ◦ S(Iv1) = K2 ⊕ P ◦ S(K1) = K0 ⊕ C2

because of relation (1). Thus, Iv2 is basically known when K0 is known, inde-
pendently of K1 and K2. The following S and P layers can also be included, so
we obtain an internal value depending only on K0 after 2.5 rounds.

Many similar eliminations can be obtained with chosen plaintext or cipher-
text once a round key is known (or guessed). Obviously, this observation suggests
guessing K0 to obtain a known intermediate value and then trying to extend
these observations over the last rounds. We describe such an attack in Section 4.

3.2 Algebraic Properties of 2.5 rounds of Khazad

In this section, we consider the algebraic properties of Khazad. More precisely,
we show that the last 2.5 rounds of Khazad can be expressed using a reduced
number of algebraic relations. We also show that this system can be used to re-
trieve several subkey bits, once a few intermediate values and their corresponding
ciphertexts are known.

As it was originally argued in [10], interpolation and algebraic attacks are
good candidates to be combined with an integral attack which usually provides
known intermediate values (or linear relations between these values). In the case
of Khazad, we consider the following situation, encountered later in Section 4.

– We know 256 full intermediate values: Y1, . . . , Y256.
– 2.5 rounds of encryption remain unknown. The 3 corresponding round keys

are denoted as K, K ′ and K ′′.
– The resulting ciphertexts Z1, . . . , Z256 are known. The last 2.5 rounds of

encryption can be expressed as

Zi = K ′′ ⊕ S(K ′ ⊕ P ◦ S(K ⊕ Yi))

or, equivalently,
S(Zi ⊕K ′′) = K ′ ⊕ P ◦ S(K ⊕ Yi)

for 1 ≤ i ≤ 256. Then, the first byte of S(K ⊕ Yi), later referred to as wi can
be obtained by just guessing the first byte of K. Let P1(x) denotes the linear
function that returns the first byte of P (x) for any 64 bits input x. We have the
following relation

P1 ◦ S(Zi ⊕K ′′) = P1(K ′)⊕ wi (2)

In addition, if we guess the byte P1(K ′), we obtain, for each i, a condition on
K ′′ of the form

P1 ◦ S(known⊕K ′′) = known (3)

While it is not straightforward to solve such a non linear system, we apparently
obtain enough conditions to retrieve the value of K ′′.

Suppose we replace, in relation (3), the S-box by its exact algebraic interpo-
lation over GF(2). From the left hand side of (3), one sees that only a reduced
number of monomials in the bits of K ′′ appear. Indeed, S operates on the bytes
of K ′′, thus the monomials are those involving bits of K ′′ that “belong” to the
same byte. For instance, representing K ′′ as (k1, . . . , k64), all monomials over
(k1, . . . , k8) may appear while no monomial involving simultaneously k8 and k9

can appear.
Thus, (3) can be seen as a system of 8 relations over GF(2) involving 8×28 =

211 monomials in the bits of K ′′. Since 256 such relations are known (one for
each i = 1, . . . , 256), we obtain a system with 211 unknown monomials and 211

relations. Two bytes of round keys have been guessed to build this system.

3.3 Properties of the Linear System

In the previous Section, we built a linear system over GF(2) of 211 relations
involving 211 unknowns, which are monomials over the 64 bits of the last round
subkey. This can be summarized as

b = M x

where x and b are vectors of 211 bits and M is a square matrix obtained af-
ter replacing the S-box by its algebraic expression over GF(2). x contains the
unknown monomials and, for i = 0, . . . , 256, each relation (3) is turned into
eight conditions on the bits of x, that correspond to bits b8i, . . . , b8i+7 of b. More
precisely, from relation (2), we see that, for all i,

bi = ci ⊕ {P1(K ′)}i

where {P1(K ′)}i denotes the bit number (i mod 8) of P1(K ′), and ci depends
only on the intermediate values and the first byte of K.

In the general case, one could expect to solve this system by inverting the
matrix M . However, M is built from an S-box interpolation, thus it is not a
random matrix. It turns out that rows of M cannot have full rank for two
reasons:

– The algebraic degree of the Khazad S-box is 7, therefore the 8 columns of
M corresponding to monomials of degree 8 necessarily contain only zeroes.

– The coefficients of M corresponding to degree 7 monomials are independent
of the plaintext.

Indeed, every output bit sj of the S-box can be represented by a relation of the
form

sj =
∑

α1+···+α8≤7

β
(α1,...,α8)
j iα1

1 · · · iα8
8 (4)

for some coefficients β
(α1,...,α8)
j , with (i1, . . . , i8) denoting the input bits.

However, M is obtained by applying several times the S-box to inputs of the
form

(i1, . . . , i8) = (c1 ⊕ k1, . . . , c8 ⊕ k8)

where the ci’s are ciphertext bits and the ki’s are subkey bits. Substituting these
values in (4), it is clear that terms of degree 7 in the subkey bits are independent
of the ci’s. Therefore, for all i = 0, . . . , 256, relation (3) always provides the same
coefficients for degree 7 monomials. The 64 corresponding columns of M are not
free (and in fact have rank 8).

Moreover, when computing bt ⊕ b8i+t for i = 1, . . . , 255 and t = 0, . . . , 7,
monomials of degree 7 are eliminated. Hence, we can obtain 8 × 255 = 2040
new relations of degree 6, thus involving only 211 − 8 − 64 = 1976 monomials.
This result on a new matrix M ′ having 2040 lines and 1976 columns. The initial
system

b = M x

can be rewritten as
b′ = M ′ x′

where the vector b′ contains 2040 bits of the form bt ⊕ b8i+t and x′ contains the
1976 monomials of degree 6 or less. Besides, b′ does not depends on K ′, whose
bits get eliminated when computing bt⊕ b8i+t. A direct application of the gauss
algorithm on M ′ provides at least 64 conditions on its rows, thus conditions on
the bits of b′. These conditions must be satisfied when the correct byte of K has
been guessed.

Therefore, we do not have to solve the initial system. From the interpolation
matrix M , we can build 2040− 1976 = 64 linear conditions and thus detect the
correct guess for the corresponding 8 bits of K. We programmed this algebraic
step using the NTL library [13]. It turns out from our experiment that the kernel
of M ′ has always rank 64 (although it would be no problem if its dimension was
larger). Thus we obtain easily enough linear conditions to verify the correct
guess.

To summarize, we have shown that the last 2.5 rounds of Khazad can be
expressed with a low degree algebraic system, after guessing a reduced number
of bits. 64 linear conditions can be used to discard wrong guesses without actually
solving this system.

4 An attack against 5 rounds of Khazad

In this Section, we develop the previous observations on Khazad to mount a new
attack against 5 rounds of this cipher. The sketch of this attack works as follows

4.1 Sketch of the Attack

– Guess all 64 bits of K0

– Guess 8 bits of K1

– Introduce 256 chosen plaintexts in order to
• apply the integral attack, starting from the end of the X0 layer
• obtain known intermediate values after 2.5 rounds as in Section 3.1

– Build the interpolation matrix as described in Section 3.2.
– Build 64 linear conditions from the matrix.
– Guess the first byte of K3

• Verify the linear conditions.
• Discard wrong guesses.

– A large portion of guess of K0 and K1 are also discarded through the absence
of a matching K3

– Recover the whole secret key.

Most elements in this attack have been developed previously. Additional el-
ements needed to connect all together are described in the following section.

4.2 Strengthening the integral attack

Once K0 has been guessed, we can choose the plaintext Plain to obtain any
intermediate value after 0.5 round, since this value is equal to P ◦S(Plain⊕K0)
(and also to K1 ⊕ Iv1). We consider an integral attack starting from there. Let
us consider the set of 256 plaintexts such that Iv1 ⊕K1 takes all values on its
first byte and has constant value equal to 0 on its other bytes. This can be
represented as

Iv1 = K1 ⊕ (i, 0, 0, 0, 0, 0, 0, 0)

for 0 ≤ i ≤ 255. As in the classical integral attack, we obtain A distributions
after 1.5 round and S distributions after 2.5 rounds. Besides, since the first byte
of K1 is guessed, we have, for all i

Iv2 = K2 ⊕ P ◦ S(K1 ⊕ (i, 0, . . . , 0)) = K0 ⊕ C2 ⊕ P (∆i)

where ∆i is known. Hence, we obtain 256 known intermediate values after 2.5
rounds. Moreover these values are balanced as in the integral attack of [2] though
we do not specifically use this property.

Then, we are exactly in the situation described in Section 3.2 with 256 known
intermediate values and the corresponding ciphertexts, with 2.5 rounds inbe-
tween. We have seen that a matrix can be built and 64 linear conditions derived
from this matrix. Using them, we can guess then verify the value of the first
byte of K3. Since there are 64 conditions, many wrong guess on K0 and K1 can
even be filtered out by the absence of a matching value for K3. The number of
remaining guesses afterwards is only

264 × 28 × 28 × 2−64 = 216

thus we can guess the 56 remaining bits of K1 and deduce the full secret key -
which is equivalent to (K0,K1) - for a total complexity of 280 basic operations.

In fact, the linear algebra step has a larger complexity. The matrix we build
is independent of the 8 guessed bits of K1, so we need to built it 264 times, and
then apply the Gaussian algorithm in each case. This algorithm has complexity
of (211)3 binary operations. Using 32 bits instructions, it can be fasten up to
obtain a complexity equivalent to 228 S-box lookups. Thus, this step is roughly
equivalent to 264 × 228 = 292 S-box lookups.

On the other hand, building the matrix of interpolation has a much smaller
complexity since it can be largely precomputed (it is just a collection of smaller
matrix blocks, each depending on 8 bits of ciphertext). Besides, the cost of
verifying linear conditions corresponds in average to 272×28×2 = 281 evaluations
of linear conditions on 211 bits long vectors, each costing roughly 2× 211 bitwise
operations. Using 32 bits instruction, this is roughly equivalent to

281 × 211 × 2× 2−5 = 288

S-box lookups. Therefore, the dominant cost in our attack is the linear algebra
step.

To summarize, our attack against 5 rounds Khazad recovers the full 128 bits
secret key with time complexity equivalent on average to 291 S-box lookups and
using basically the complete dictionary of 264 plaintexts.

4.3 Overview of cryptanalytic results against Khazad

In Table 1, we have summarized all known cryptanalytic results against reduced-
round versions of Khazad. Our improved integral attack is the best cryptanalytic
result against Khazad. However, its data complexity represents in average the
complete dictionary of 264 plaintexts. Indeed, we need to encrypt 256 plaintexts
for each guess of the first subkey. It is possible that the correct subkey is identified
early, however, in average, all possible plaintexts will have been encrypted by
the time we find the correct K0. We did not manage to find a technique to guess
the subkeys in a better order, or to trade data complexity for time complexity.
This is a topic for further research.

In practice this huge data complexity will make the attack infeasible, al-
though it is significantly faster than exhaustive key search. Furthermore, it is
widely considered that recent block ciphers should resist key recovery attack
even when the full dictionary is known. Therefore, we consider this new attack
is a significant step forward in the analysis of Khazad. Whether it can be ex-
tended to 6 or more rounds remains an open question that should be further
investigated.

5 Possible Extensions

The attack we have described in Section 4 does not depend in depth from the
components of this cipher. Concerning the S-box, the only property we use is its
algebraic degree of 7. Concerning the MDS matrix, no property is specifically
used. Therefore, Khazad cannot be strengthen by changing these components,
and our attack depends only on the high-level structure of the cipher.

5.1 Key Scheduling Redundancy Attacks

In the case of Khazad, we have shown that re-using the round function inside
the key scheduling has surprising effects. More generally, when a block cipher E
uses in its key scheduling the same basic components as in the round function,
a general problem is to consider the encryption of a chosen plaintext

Plain = Φ(K0)

for a well chosen function Φ of the first round key K0. More precisely, one should
investigate if a cascade elimination cannot occur and yield a predictable value
of EK(Plain), or even a simple function of a subkey. For instance, if

EK(Plain) = Ψ(Ki)

for some i and some function Ψ , one may recover Ki from the guess of K0 with
time and data complexity roughly equivalent to the size of the subkeys. If, in
addition, the full secret key can be reconstructed from K0 and Ki (which is
sometimes the case for key scheduling based on Feistel networks), this can lead
to an attack. This threat mostly concerns “small” block ciphers (like Khazad),
where the round subkeys are smaller than the secret key.

In addition, an improvement would be to guess only a part of the first subkey,
to obtain partially known intermediate values, in the case of SPN block ciphers
that do not achieve full diffusion. This is the case of Anubis or Rijndael, though
we did not manage to obtain any such observation against those. Furthermore,
the existence of improved cascade eliminations on Khazad should also be further
analyzed. More generally, using a key scheduling that is not too similar to the
round function is probably a more reasonable thing.

5.2 Combining Integral and Interpolation Attacks

This idea of combining integral attacks with attacks based on the algebraic prop-
erties of a block cipher was originally introduced in [10]. However, no successful
application has been reported since then. Our improved integral attack against
Khazad is apparently the first successful combination of these two cryptanalytic
techniques, although we also use additional properties of Khazad here.

The problem is that integral attacks generally end up providing some infor-
mation concerning a balanced set of intermediate values. This type of property
does not pass well across S-box layers, while the diffusion layers very quickly
increase the number of monomials. Thus it is generally difficult to write simple
algebraic relations, even after guessing some subkey bits as we did for Khazad.
An other specific problem is that only algebraic relations where intermediate
values are expressed as a function of subkey and ciphertext bits are generally
useful for interpolation attacks. For instance, low degree algebraic relations from
the inversion in GF (28) cannot be used, at least in a straightforward manner. In
spite of these problems, we believe such attacks combining different cryptanalytic
techniques may be of interest in the future.

5.3 Other algebraic approaches

In Section 3.3, we obtained a large multivariate, non linear system over GF(2).
We used the relinearization technique [15], that means replacing all monomials
(which happen to be present in reduced number here) by new unknowns and
apply usual linear algebra techniques. This technique is not the best method
known to solve nonlinear multivariate systems. However, it turns out to be suf-
ficient and quite successful since we can obtain simple conditions on subkey bits
by reducing the underlying matrix. In fact, we do not even need to solve this
system, to finish with.

In a very generic way, what we obtain, for each guess of K0, is a system
of low degree involving a few unknown subkey bits. We need either to solve
this system, or to detect quickly if it has some solutions. Our attack uses the

second strategy, and requires one application of the gauss algorithm on a 211

bits square matrix. In the light of recent progress ([7], [16]), better techniques
to directly solve the system could be considered. However, it seems unlikely the
time complexity could be pushed below the length of the outside loop, namely
264. Thus any complexity gain would probably be limited. However, it would be
interesting to find if a similar simple system over more than 2.5 rounds could be
derived.

5.4 Exposure of Round Keys

It results from the previous observations that the security of 5 rounds of Khazad
depends only on the secrecy of the first subkey. Indeed the complexity of our
attack is quite high, especially the data complexity, however this is mostly due
to the cost of guessing the first subkey K0.

If, somehow, the first round subkey is exposed, then 5 rounds reduced Khazad
becomes insecure. In this case, the complete secret key can be recovered by
applying a few times the attack of Section 4, which has complexity of only 228

S-box lookups and 256 chosen plaintexts when K0 is known. We consider this
property is quite undesirable. Indeed, information about the first round subkey
may be obtained by other means than exhaustive search. For instance, side
channel attack techniques may provide this kind of information.

6 Conclusion

We have proposed a new attack against the block cipher Khazad. This cipher is
very interesting, because it constitutes a reduced and simplified version of Rijn-
dael, so its analysis is very helpful in understanding the security of word-oriented
SPN block ciphers, which are now largely used since the standardization of Ri-
jndael as the AES. In particular, the new class of integral (aka Square) attacks
which are (almost) independent of the S-boxes should be further investigated.

In this paper, we break 5 rounds of Khazad (against 8 rounds for the full
cipher) faster than exhaustive search: we use about 264 chosen plaintexts and 291

S-box lookups in average. Although the cryptanalytic techniques we exploit are
not new, we combine them in a new and unexpected way to improve on known
attacks. A very surprising improvement arises from some redundancies between
the key scheduling and the round function of Khazad. Whether this attack can
be improved or extended to 6 rounds remains a topic for further research.

References

1. P. Barreto and V. Rijmen. The Anubis Block Cipher. In First Open NESSIE
Workshop, KU-Leuven, 2000. Submission to NESSIE.

2. P. Barreto and V. Rijmen. The Khazad Legacy-Level Block Cipher. In First Open
NESSIE Workshop, KU-Leuven, 2000. Submission to NESSIE.

3. P. Barreto, V. Rijmen, J. Nakahara Jr., B. Preneel, J. Vadewalle, and H. Y. Kim.
Improved SQUARE Attacks against Reduced-Round HIEROCRYPT. In M. Mat-
sui, editor, Fast Software Encryption – 2001, volume 2355 of Lectures Notes in
Computer Science, pages 165–173. Springer, 2001.

4. A. Biryukov. Analysis of Involutional Ciphers: Khazad and Anubis. In T. Johans-
son, editor, Fast Software Encryption – 2003, Lectures Notes in Computer Science.
Springer, 2003. To appear.

5. J. Daemen, L. Knudsen, and V. Rijmen. The Block Cipher Square. In E. Bi-
ham, editor, Fast Software Encryption – 1997, volume 1267 of Lectures Notes in
Computer Science, pages 149–165. Springer, 1997.

6. J. Daemen and V. Rijmen. AES Proposal: Rijndael. In AES Round 1 Technical
Evaluation CD-1: Documentation. NIST, 1998.

7. J.C. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems Using Gröbner Bases. In D. Boneh, editor, Advances in
Cryptology – Crypto’03, volume 2729 of Lectures Notes in Computer Science, pages
44–60. Springer, 2003.

8. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting.
Improved Cryptanalysis of Rijndael. In B. Schneier, editor, Fast Software Encryp-
tion – 2000, volume 1978 of Lectures Notes in Computer Science, pages 213–230.
Springer, 2000.

9. H. Gilbert and M. Minier. A Collision Attack on Seven Rounds of Rijndael. In
Third AES Conference, pages 230–241. NIST, 2000.

10. L. Knudsen and D. Wagner. Integral Cryptanalysis. In J. Daemen and V. Rij-
men, editors, Fast Software Encryption – 2002, volume 2365 of Lectures Notes in
Computer Science, pages 112–127. Springer, 2002. Extended Abstract.

11. NESSIE - New European Schemes for Signature, Integrity and Encryption.
http://www.cryptonessie.org.

12. NESSIE Security Report D20, version 2-0. Available at
http://www.cryptonessie.org.

13. NTL library. Available at http://www.shoup.net.
14. V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win. The Cipher

SHARK. In D. Gollmann, editor, Fast Software Encryption – 1996, volume 1039
of Lectures Notes in Computer Science, pages 99–112. Springer, 1996.

15. A. Shamir and A. Kipnis. Cryptanalysis of the HFE Public Key Cryptosystem. In
M. Wiener, editor, Advances in Cryptology – Crypto’99, volume 1666 of Lectures
Notes in Computer Science, pages 19–30. Springer, 1999.

16. A. Shamir, J. Patarin, N. Courtois, and A. Klimov. Efficient Algorithms for solving
Overdefined Systems of Multivariate Polynomial Equations. In B. Preneel, editor,
Advances in Cryptology – Eurocrypt’00, volume 1807 of Lectures Notes in Computer
Science, pages 392–407. Springer, 2000.

