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Abstract. In this paper, we study some RSA-based semantically secure
encryption schemes (IND-CPA) in the standard model. We first derive
the exactly tight one-wayness of Rabin-Paillier encryption scheme which
assumes that factoring Blum integers is hard. We next propose the first
IND-CPA scheme whose one-wayness is equivalent to factoring general
n = pq (not factoring Blum integers). Our reductions of one-wayness are
very tight because they require only one decryption-oracle query.
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1 Introduction

1.1 Background

An encryption scheme should have strong one-wayness as well as high semantic
security. Therefore, it is desirable to construct a semantically secure encryption
scheme whose one-wayness is equivalent to factoring n = pq in the standard
model. (There are several provably secure constructions in the random oracle
model. For example, see [Sho01,FOPS01,Bon01].)

RSA-Paillier encryption scheme is semantically secure against chosen plain-
text attacks (IND-CPA) in the standard model under the RSA-Paillier assump-
tion [CGHN01]. The assumption claims that

SMALLRSAP = {re mod n2|r ∈ Zn} and LARGERSAP = {re mod n2|r ∈ Zn2}
are indistinguishable, where (n, e) is the public-key of RSA. Further, it is one-
way if breaking RSA is hard. The latter problem was first raised by [ST02] and
finally proved by [CNS02] using LLL algorithm of lattice theory.

On the other hand, n(= pq) is called a Blum integer if p = q = 3 mod 4.
Galindo et al. recently considered Rabin-Paillier encryption scheme and showed
that it is one-way if factoring Blum integers is hard [GMMV03].

However, there is a large gap between the one-wayness which they proved
and the difficulty of factoring. That is, suppose that the one-wayness is broken



with probability ε. Then what Galindo et al. proved is that Blum integers can
be factored with probability ε2. Further the factoring problem is restricted to
Blum integers, but not general p, q.

(The one-wayness of Okamoto-Uchiyama scheme [OU98] is equivalent to fac-
toring n = p2q, but not n = pq.)

1.2 Our Contribution

In this paper, we study the tight one-wayness of some RSA-based semantically
secure encryption schemes (IND-CPA) in the standard model, where the one-
wayness must be equivalent to factoring n = pq.

We first show that Rabin-Paillier encryption scheme has no gap between the
real one-wayness and the difficulty of factoring Blum integers. (In other words,
we give a factoring algorithm with success probability ε.) Our proof technique
is quite different from previous proofs. In particular:

– Our proof technique requires only one decryption-oracle query while the pre-
vious proofs for RSA/Rabin-Paillier encryption schemes require two oracle
queries [CNS02,GMMV03].

– No LLL algorithm is required, which was essentially used in the previous
proofs for RSA/Rabin-Paillier schemes [CNS02,GMMV03].

We next propose the first IND-CPA scheme such that the one-wayness is
equivalent to factoring general n = pq (not factoring Blum integers). The one-
wayness is proved by applying our proof technique as mentioned above. There-
fore, our security reduction of one-wayness is very tight. That is, there is almost
no gap between the one-wayness and the hardness of the general factoring prob-
lem.

The proposed scheme is obtained from an encryption scheme presented by
Kurosawa et al. [KIT88,KOMM01]. The semantic security holds under a nat-
ural extension of RSA-Paillier assumption. That is, it is semantically secure
(IND-CPA) if two distributions SMALLRSAK and LARGERSAK are indistin-
guishable, where we define SMALLRSAK and LARGERSAK as appropriate
subsets of SMALLRSAP and LARGERSAP , respectively. We also show a close
relationship between our assumption and RSA-Paillier assumption.

This paper is organized as follows: In Section 2, we describe notions required
for the security description in this paper. In Section 3, the exact security reduc-
tion algorithm for Rabin-Paillier encryption scheme is presented. In Section 4,
the proposed scheme is presented. In Section 5, we prove that the one-wayness
of the proposed scheme is as hard as general factoring problem. In Section 6, we
discuss the semantic security of the proposed scheme. Sec.7 includes some final
comments.

Related works: Cramer and Shoup showed an semantically secure encryp-
tion scheme against chosen ciphertext attacks (IND-CCA) under the decision
Diffie-Hellamn assumption [CS98]. They recently showed a general framework
to construct IND-CCA schemes [CS02].



It will be a further work to develop an IND-CCA scheme whose one-wayness
is equivalent to the factoring problem in the standard model. We hope that our
results provide us a good starting point to this challenging problem.

2 Security of Encryption Schemes

PPT will denote a ”probabilistic polynomial time”.

2.1 Encryption Scheme

A public-key encryption scheme PE = (K, E ,D) consists of three algorithms. The
key generation algorithm K outputs (pk, sk) on input 1l, where pk is a public
key, sk is the secret key and l is a security parameter. We write (pk, sk) R← K.
The encryption algorithm E outputs a ciphertext c on input the public key pk

and a plaintext (message) m; we write c
R← Epk(m). The decryption algorithm

D outputs m or reject on input the secret key sk and a ciphertext c; we write
x ← Dsk(c), where x = m or reject. We require that Dsk(Epk(m)) = m for each
plaintext m. K and E are PPT algorithms, and D is a polynomial time algorithm.

2.2 One-Wayness

The one-wayness problem is as follows: given a public key pk and a ciphertext
c, find the plaintext m such that c

R← Epk(m). Formally, for an adversary A,
consider an experiment as follows.

(pk, sk) R← K, c
R← Epk(m), m̃ R← A(pk, c).

where m is randomly chosen from the domain of pk. Let

Advow
PE(A) = Pr(m̃ = m).

For any t > 0, define
Advow

PE(t) = max
A

Advow
PE(A),

where the maximum is over all A who run in time t.

Definition 1. We say that PE is (t, ε)-one-way if Advow
PE(t) < ε. We also say

that PE is one-way if Advow
PE(A) is negligible for any PPT adversary A.

2.3 Semantic Security

We say that a public-key encryption scheme PE = (K, E ,D) is semantically
secure against chosen plaintext attacks (SS-CPA) if it is hard to find any (partial)
information on m from c. This notion is equivalent to indistinguishability (IND-
CPA), which is described as follows [BDPR98,Gol01].



We consider an adversary B = (B1, B2) as follows. In the “find” stage, B1

takes a public key pk and outputs (m0,m1, state), where m0 and m1 are two
equal length plaintexts and state is some state information. In the “guess” stage,
B2 gets a challenge ciphertext c

R← Epk(mb) from an oracle, where b is a randomly
chosen bit. B2 finally outputs a bit b̃. We say that an encryption scheme PE is
secure in the sense of IND-CPA if |Pr(b̃ = b)− 1/2| is negligible.

Formally, for each security parameter l, let

(pk, sk) R← K, (m0,m1, state) R← B1(pk), c R← Epk(mb), b̃
R← B2(c, state).

Definition 2. We say that PE is secure in the sense of indistinguishability
against chosen-plaintext attack (IND-CPA) if

Advind
PE (B)

4
= |Pr(b̃ = b)− 1/2|

is negligible for any PPT adversary B.

If an adversary B = (B1, B2) is allowed to access the decryption oracle
Dsk(·), we denote it by BD = (BD

1 , BD
2 ). If Advind

PE (BD) is negligible for any
PPT adversary BD, we say that PE is secure in the sense of indistinguishability
against adaptive chosen-ciphertext attack (IND-CCA).

2.4 Factoring Assumptions

The general factoring problem is to factor n = pq, where p and q are two primes
such that |p| = |q|. Formally, for an factoring algorithm B, consider the following
experiment. Generate two primes p and q such that |p| = |q| randomly. Give
n = pq to B. We say that B succeeds if B can output p or q.

Definition 3. We say that the general factoring problem is (t, ε)-hard if Pr(B
succeeds) < ε for any B who runs in time t. We also say that it is hard if
Pr(B succeeds) is negligible for any PPT algorithm B.

The general factoring assumption claims that the general factoring problem is
hard.

We say that n(= pq) is a Blum integer if p and q are prime numbers such that
p = q = 3 mod 4 and |p| = |q|. The Blum-factoring problem is defined similarly.
Blum-factoring assumption claims that the Blum-factoring problem is hard.

3 Exact One-Wayness of Rabin-Paillier Scheme

Galindo et al. recently constructed Rabin-Paillier encryption scheme [GMMV03]
and showed that its one-wayness is as hard as factoring Blum integers, where n =
pq is called a Blum integer if p = q = 3 mod 4. However, there is a polynomially
bounded gap between the difficulty of factoring and the claimed one-wayness.
This is because they used the same proof technique as that of [CNS02].



In this section, we show that there exists no gap between the difficulty of
factoring Blum integers and the real one-wayness of Rabin-Paillier encryption
scheme. In other words, we present the exactly tight one-wayness of Rabin-
Paillier encryption scheme.

Our proof is very simple and totally elemental. In particular, no LLL algo-
rithm is required which was essentially used in the previous proofs for RSA/Rabin-
Paillier [CNS02,GMMV03].

3.1 Rabin-Paillier Encryption Scheme

Rabin-Paillier encryption scheme is described as follows. Let

Qn
4
= {r2 mod n2 | r ∈ Z∗n}.

We say that r̄ ∈ Z∗n is conjugate if (r̄/n) = −1, where (m/n) denotes Jacobi’s
symbol.

(Secret key) Two prime numbers p and q such that |p| = |q| and p = q =
3 mod 4.

(Public key) n(= pq), e, where e is a prime such that |n|/2 < e < |n|.
(Plaintext) m ∈ Zn.
(Ciphertext)

c = r2e + mn mod n2, (1)

where r ∈ Qn is randomly chosen.
(Decryption) Since e is a prime such that |n|/2 < e < |n|, it satisfies that

gcd(e, p− 1) = gcd(e, q − 1) = 1. (2)

Therefore, there exists d such that ed = 1 mod lcm(p− 1, q − 1).
Now let E = cd mod n. Then it is easy to see that

E = r2 mod n.

We can find r such that r ∈ Qn uniquely because p = q = 3 mod 4. Finally,
by substituting r into eq.(1), we can obtain m.

In [GMMV03], the authors showed that Rabin-Paillier encryption scheme is
secure in the sense of IND-CPA if (n, e, E(n, e; 0)) and (n, e, Qn2) are indistin-
guishable, where

E(n, e; 0)
4
= {r2e mod n2 | r ∈ Qn}.

Remarks:

1. In [GMMV03], the condition on e is restricted to gcd(e, λ(n)) = 1, where λ is
Carmichael’s function. However, for this parameter choice, we cannot prove
that the one-wayness is as hard as the factoring problem, because we cannot
generally choose such e for a given n. In Appendix B, we also point out a
flaw on their claim for the semantic security of Rabin-Paillier cryptosystem.



2. RSA-Paillier encryption scheme is obtained by letting

c = re(1 + mn) mod n2

for m ∈ Zn and r ∈ Zn [CGHN01].

3.2 Exactly Tight One-Wayness

Suppose that there exists a PPT algorithm that breaks the one-wayness with
probability ε. Then Galindo et al. proved that there exists a PPT algorithm
that can factor Blum integers n with probability ε2 (see the proof of [GMMV03,
Proposition 6]).

In this subsection, we show that there exists a PPT algorithm that can factor
Blum integers n with probability ε. Since the converse is clear, our reduction is
exactly tight.

Scheme Factoring Probability

Galindo et al. [GMMV03] ε2

Our Proposed Proof ε

Table 1. Factoring probability using OW-oracle with probability ε

Lemma 1. Let n be a Blum integer. For any conjugate r̄, there exists a unique
r ∈ Qn such that

r2 = r̄2 mod n. (3)

Further, gcd(r − r̄, n) = p or q.

Proof. Note that (−1/p) = −1 and (−1/q) = −1 for a Blum integer n = pq.
A conjugate r̄ ∈ Z∗n satisfies (r̄/n) = −1, namely (I) : (r̄/p) = 1 ∧ (r̄/q) = −1
or (II) : (r̄/p) = −1 ∧ (r̄/q) = 1. In the case of (I), define r = r̄ mod p and
r = −r̄ mod q, then the statement of the lemma is obtained. Similarly in the
case of (II) we assign r = −r̄ mod p and r = r̄ mod q.

Theorem 1. Rabin-Paillier encryption scheme is (t, ε)-one-way if Blum factor-
ing problem is (t′, ε)-hard, where t′ = t +O((log n)3).

Proof. Suppose that there exists an oracle O which breaks the one-wayness of
Rabin-Paillier encryption scheme with probability ε in time t. We will show a
factoring algorithm A.

We show how to find r and r̄ satisfying eq.(3). On input n, A first chooses a
prime e such that |n|/2 < e < |n| randomly. A next chooses a conjugate r̄ ∈ Z∗n
and a (fake) plaintext m̄ ∈ Zn randomly, and computes a (fake) ciphertext

c = r̄2e + m̄n mod n2.

It is clear that c is uniquely written as c = B0 + B1n mod n2 for some
B0 ∈ Qn, B1 ∈ Zn. Note that



1. B1 is uniformly distributed over Zn because m̄ is randomly chosen from Zn,
and

2. B0 is uniformly distributed over {r2e mod n | r ∈ Qn} from Lemma 1.

Therefore, c is distributed in the same way as valid ciphertexts.
Now A queries c to the oracle O. O then answers a (valid) plaintext m such

that
c = r2e + mn mod n2

with probability ε in time t, where r ∈ Qn. Then we have

c = r2e = r̄2e mod n.

Hence we see that r2 = r̄2 mod n. Therefore, r2 is written as

r2 = r̄2 + yn (4)

for some y ∈ Zn (with no modulus). By letting x = r̄2 mod n2, we obtain that

w
4
= c−mn = r2e = (x + yn)e = xe + eynxe−1 mod n2. (5)

It is easy to see that

eyxe−1 =
w − xe

n
mod n.

Therefore y is obtained as

y = (exe−1)−1 w − xe

n
mod n.

Substitute y into eq.(4). Then we can compute a square root r > 0 because eq.(4)
has no modulus. Finally we can factor n by using (r, r̄) from Lemma 1. ut

Our algorithm A for Rabin-Paillier scheme is summarized as follows.

Exact OW Rabin Paillier
Input: (n, e), public key of Rabin-Paillier scheme
Output: p, q, factoring of n
1. choose a random r̄ ∈ Z∗n such that (r̄/n) = −1.
2. compute x = r̄2 mod n2.
3. choose a random (fake) plaintext m̄ ∈ Zn.
4. compute a ciphertext c = xe + m̄n mod n2.
5. obtain a valid plaintext m = O(c)
6. compute w = c−mn = r2e mod n2.
7. compute u = (w − xe mod n2)/n.
8. compute y = u(ex(e−1))−1 mod n.
9. compute v = r̄2 + ny.
10. find r > 0 such that r2 = v in Z.
11. return gcd(r̄ − r, n).



4 New Encryption Scheme

In this section, we propose an encryption scheme such that its one-wayness
is as hard as the general factoring problem of n = pq (not factoring Blum
integers). The proposed scheme is obtained from an encryption scheme proposed
by Kurosawa et al. [KIT88,KOMM01].

4.1 Kurosawa et al.’s Encryption Scheme

Kurosawa et al.’s showed an encryption scheme as follows [KIT88].

(Secret key) Two prime numbers p and q such that |p| = |q|.
(Public key) n(= pq) and α such that

(α/p) = (α/q) = −1, (6)

where (α/p) denotes Legendre’s symbol.
(Plaintext) m ∈ Z∗n.
(Ciphertext) c = (E, s, t) such that

E = m +
α

m
mod n (7)

s =
{

0 if (m/n) = 1;
1 if (m/n) = −1, t =

{
0 if (α/m mod n) > m;
1 if (α/m mod n) < m.

(Decryption) From eq.(7), it holds that

m2 − Em + α = 0 mod n. (8)

The above equation has four roots. However, we can decrypt m uniquely
from (s, t) due to eq.(6) [KIT88,KOMM01]. Also see [KT03, Appendix E].

In [KIT88,KOMM01], it is proved that this encryption scheme is one-way
under the general factoring assumption.

4.2 Proposed Encryption Scheme

(Secret key) Two prime numbers p and q such that |p| = |q|.
(Public key) n(= pq), e, α, where e is a prime such that |n|/2 < e < |n| and

α ∈ Z∗n satisfies
(α/p) = (α/q) = −1. (9)

(Plaintext) m ∈ Zn.
(Ciphertext)

c =
(
r +

α

r

)e

+ mn mod n2, (10)

where r ∈ Z∗n is a random element such that (r/n) = 1 and (α/r mod
n) > r. (We can compute 1/r mod N2 faster than the direct method [KT03,
Sec.4.3].)



(Decryption) Let E = cd mod n, where ed = 1 mod lcm(p− 1, q − 1). Then it
is easy to see that

E = r +
α

r
mod n.

Note that (E, 0, 0) is the ciphertext of r by Kurosawa et al.’s encryption
scheme. Therefore we can find r by decrypting (E, 0, 0) with the decryption
algorithm. Finally, by substituting r into eq.(10), we can obtain m.

5 One-Wayness of the Proposed Scheme

In this section, we show the one-wayness of the proposed scheme by applying our
proof technique developed in Sec.3. Our security reduction is very tight. That is,
there is almost no gap between the one-wayness and the hardness of the general
factoring problem. Indeed, our proof requires only one decryption-oracle query
while the previous proof for RSA/Rabin-Paillier encryption scheme requires two
oracle queries [CNS02,GMMV03].

5.1 Proof of One-Wayness

We say that

1. r ∈ Z∗n is principal if (r/n) = 1 and (α/r mod n) > r.
2. r̄ ∈ Z∗n is conjugate if (r̄/n) = −1.

Note that in terms of the parameters of Kurosawa et al’s encryption scheme,
r ∈ Z∗n is principal if (s, t) = (0, 0) and r̄ ∈ Z∗n is conjugate if s = 1.

Lemma 2. For any conjugate r̄, there exists a unique principal r such that

E
4
= r̄ +

α

r̄
= r +

α

r
mod n. (11)

Further, gcd(r − r̄, n) = p or q.

Proof. There are four different solutions of Kurosawa et al’s encryption E cor-
responding to (s, t) = (0, 0), (0, 1), (1, 0), (1, 1) as shown in [KIT88,KOMM01].
(Also see [KT03, Appendix E].) A conjugate r̄ satisfies (r̄/p) = 1 ∧ (r̄/q) = −1
or (r̄/p) = −1 ∧ (r̄/q) = 1 for s = 1. Define r1 = r̄ mod p ∧ r1 = α/r̄ mod q and
r2 = α/r̄ mod p∧ r2 = r̄ mod q. Then either r1 or r2 is the required principle r.
Hence, the former part of this Lemma holds. Further, r 6= r̄ mod p∧r = r̄ mod q
or r = r̄ mod p ∧ r 6= r̄ mod q holds due to (α/p) = (α/q) = −1. Therefore, we
can see that gcd(r − r̄, n) = p or q. ut

From eq.(11), it holds that

r + α/r = (r̄ + α/r̄) + yn mod n2 (12)

for some unique y ∈ Z∗n.



Lemma 3. Suppose that we have (r̄, y) satisfying eq.(12) for some principal r,
where r̄ is conjugate. Then we can factor n.

Proof. We show that r can be computed from (y, r̄). Let

v = (r̄ + α/r̄) + yn mod n2.

Then we have
r2 − vr + α = 0 mod n2

from eq.(12). We can solve this quadratic equation by using the Coppersmith’s
algorithm [Cop96] because of 0 < r < n. Then we can factor n from Lemma
2. ut
Lemma 4. Suppose that there exists an oracle O that breaks the one-wayness
of the proposed scheme with probability ε and in time t. Then there exists
an algorithm A which factors n from (n, e, α) with probability ε in time t +
poly(log n), where O is invoked once.

Proof. We show how to find r̄ and y satisfying eq.(12). On input (n, e, α), A first
chooses a conjugate r̄ ∈ Z∗n randomly and computes

x = r̄ +
α

r̄
mod n2. (13)

It next chooses a (fake) plaintext m̄ ∈ Zn randomly and computes

c = xe + m̄n mod n2.

It is clear that c is uniquely written as c = B0+B1n mod n2 for some B0, B1 ∈
Zn. Note that (1) B1 is uniformly distributed over Zn because m̄ is randomly
chosen from Zn. (2) B0 is uniformly distributed over {(r + α/r)e mod n | r ∈
Z∗n is principal} from Lemma 2. Therefore, c is distributed in the same way as
valid ciphertexts.

Now A queries c to the oracle O. O then answers a (valid) plaintext m such
that

c =
(
r +

α

r

)e

+ mn mod n2

with probability ε and in time t, where r ∈ Z∗n is principal. Then we have

c =
(
r +

α

r

)e

= xe mod n.

Hence we see that r + α
r = x mod n. Therefore, there exists y ∈ Zn such that

r +
α

r
= x + yn mod n2.

We then obtain that

w
4
= c−mn = (r + α/r)e = (x + yn)e = xe + eynxe−1 mod n2.



It is easy to see that

eyxe−1 =
w − xe

n
mod n.

Therefore y is obtained as

y =
w − xe

n
(exe−1)−1 mod n.

Finally we can factor n by using (r̄, y) from Lemma 3. ut
Our algorithm A for the proposed scheme is summarized as follows:

OW Reciprocal Paillier
Input: (n, e, α), public-key of the proposed scheme
Output: p, q, factoring of n
1. choose a random r̄ ∈ Z∗n such that (r̄/n) = −1.
2. compute x = r̄ + α/r̄ mod n2.
3. choose a random (fake) plaintext m̄ ∈ Z∗n.
4. compute a ciphertext c = xe + m̄n mod n2.
5. obtain a valid plaintext m = O(c)
6. compute w = c−mn = (r + α/r)e mod n2.
7. compute u = (w − xe)/n.
8. compute y = u(ex(e−1))−1 mod n.
9. compute v = (r̄ + α/r̄) + ny mod n.
10. solve r2 − vr + α = 0 mod n2 using Coppersmith’s algorithm [Cop96].
11. return gcd(r̄ − r, n).

Theorem 2. The proposed encryption scheme is (t, ε) one-way if the general
factoring problem is (t′, ε/2)-hard, where t′ = t + poly(log n).

Proof. Suppose that there exists a PPT algorithm that breaks the one-wayness
of the proposed scheme with probability ε in time t. Then we show a PPT
algorithm which can factor n.

For a given n, we choose a prime e such that |n|/2 < e < |n| randomly.
We also choose α ∈ Z∗n such that (α/n) = 1 randomly. It is easy to see that α
satisfies eq.(9) with probability 1/2. Next apply Lemma 4 to (n, e, α). Then we
can factor n with probability ε/2 in time t′ = t + poly(log n). ut

The proposed scheme is a combination of the scheme of Kurosawa et al. and
the RSA-Paillier scheme. Another construction is to encrypt a message m ∈
Z/nZ as follows:

c =
(
re +

α

re

)
+ mn mod n2, (14)

where r ∈ Z∗n is a random element such that (re mod n/n) = 1 and (α/re mod
n) > r. After computing re mod n2 the reciprocal encryption is applied. How-
ever, the security analysis of this construction is more difficult — we cannot
apply the above proof technique to this scheme, because re mod n2 is larger
than n.



5.2 Hensel Lifting and Large Message Space

Catalano et al. proved that Hensel-RSA problem is as hard as breaking RSA for
any lifting index l [CNS02].

In this section, we define Hensel-Reciprocal problem and show that it is as
hard as general factorization for any lifting index l. This result implies that we
can enlarge the message space of the proposed encryption scheme for m ∈ Zn2

in such a way that
c = re + mn mod nl.

Suppose that we are given a public key (n, e, α) of the proposed encryption
scheme and

y =
(
r +

α

r

)e

mod n,

where r ∈ Z∗n is principal. The Hensel-Reciprocal problem is to compute

Y =
(
r +

α

r

)e

mod nl

from (n, e, α, y) and l, where r ∈ Z∗n is principal and l is a positive integer. Then
we can prove the following theorem (See [KT03]).

Theorem 3. The Hensel-Reciprocal problem is as hard as general factorization
for any lifting index l ≥ 2.

Proof. It is easy to see that we can solve the Hensel-Reciprocal problem if we
can factor n. We will prove the converse.

Suppose that there exists a PPT algorithm which can solve the Hensel-
Reciprocal problem with probability ε for some l ≥ 2. That is, the PPT al-
gorithm can compute Y =

(
r + α

r

)e mod nl from (n, e, α, y) and l ≥ 2, where
r ∈ Z∗n is principal. Then we can compute Y ′ =

(
r + α

r

)e mod n2. Now similarly
to the proof of Lemma 4 and Theorem 2, we can factor n with probability ε/2
in polynomial time. ut

6 Semantic Security of the Proposed Scheme

In this section, we discuss the semantic security of the proposed scheme. Let
(n, e, α) be a public key of the proposed encryption scheme.

6.1 Semantic security

Let

SMALLRSAP (n, e)
4
= {(n, e, x) | x = re mod n2, r ∈ Zn}

LARGERSAP (n, e)
4
= {(n, e, x) | x = re mod n2, r ∈ Zn2}

Note that

|SMALLRSAP (n, e)| = n, and |LARGERSAP (n, e)| = n2.



It is known that RSA-Paillier encryption scheme is IND-CPA if SMALLRSAP (n, e)
and LARGERSAP (n, e) are indistinguishable [CGHN01]. We call it RSA-Paillier
assumption.

We now define SMALLRSAK(n, e, α) and LARGERSAK(n, e, α) as follows.

SMALLRSAK(n, e, α)
4
= {(n, e, α, x) | x =

(
r +

α

r

)e

mod n2, r ∈ Z∗n is principal}

LARGERSAK(n, e, α)
4
= {(n, e, α, x) | x =

(
r +

α

r

)e

mod n2, r ∈ Z∗n2}.

Note that

|SMALLRSAK(n, e, α)| = φ(n)/4, and |LARGERSAK(n, e, α)| = φ(n)n/4,

because r + α
r mod n2 is a 4 : 1 mapping.

Theorem 4. The proposed encryption scheme is secure in the sense of IND-
CPA if two distributions SMALLRSAK(n, e, α) and LARGERSAK(n, e, α) are
indistinguishable.

We call the above indistinguishability Reciprocal-Paillier assumption. A proof
will be given in Appendix A.

6.2 Relationship with RSA-Paillier Assumption

We investigate the relationship between RSA-Paillier assumption and Reciprocal-
Paillier assumption. We first generalize SMALLRSAP and LARGERSAP so that
they include α. That is, let

SMALL′RSAP (n, e, α)
4
= {(n, e, α, x) | x = re mod n2, r ∈ Z∗n}

LARGE′
RSAP (n, e, α)

4
= {(n, e, α, x) | x = re mod n2, r ∈ Z∗n2}

We then define modified RSA-Paillier assumption as follows: SMALL′RSAP (n, e, α)
and LARGE′

RSAP (n, e, α) are indistinguishable. We next define reciprocal as-
sumption as follows: SMALLRSAK(n, e, α) and SMALL′RSAP (n, e, α) are in-
distinguishable.

Then we have the following corollary of Theorem 4.

Corollary 1. The proposed encryption scheme is secure in the sense of IND-
CPA if both modified RSA-Paillier assumption and the reciprocal assumption
hold.

Proof. We prove that LARGERSAK(n, e, α) and LARGE′
RSAP (n, e, α) are in-

distinguishable under the reciprocal assumption. Let O be an oracle that distin-
guishes two distributions LARGERSAK(n, e, α) and LARGERSAP (n, e, α). We
construct a distinguisher D which can distinguish between SMALLRSAK(n, e, α)
and SMALL′RSAP (n, e, α). For (n, e, α, c), D chooses a random s ∈ Zn, and com-
putes c′ = c + ns mod n2. Then it asks (n, e, α, c′) to the oracle O. Because s



is randomly chosen in Zn, we can show that (n, e, α, c′) is uniformly distributed
in either LARGERSAK(n, e, α) or LARGE′

RSAP (n, e, α). Thus the oracle O can
correctly distinguish between SMALLRSAK(n, e, α) and SMALL′RSAP (n, e, α).

Therefore

SMALLRSAK ≈ SMALL′RSAP ≈ LARGE′
RSAP ≈ LARGERSAK ,

where ≈ means indistinguishable. This implies that Reciprocal-Paillier assump-
tion holds. ut

7 On Chosen Ciphertext Security

For chosen ciphertext security, we can obtain a variant of our encryption scheme
as follows by applying the technique of [Poi99].

c = (
(
r +

α

r

)e

+ mn mod n2)||H(r,m)

where H is a random hash function and || denotes concatenation. In the random
oracle model, (1) this scheme is one-way against chosen ciphertext attacks under
the general factoring assumption. (2) It is also IND-CCA under the assumption
given in Sec.6.

In the standard model, it still remains one-way and IND-CPA against chosen
plaintext attacks. In general, we can prove the following theorem.

Theorem 5. Let PE be an encryption scheme with ciphertexts c = Epk(m, r).
Suppose that (1) the set of r belongs to BPP and (2) there exists a decryption
algorithm which outputs not only m but also r. For PE, consider an encryption
scheme P̃E such that

c̃ = Epk(m, r)||H(m, r).

If PE is one-way against chosen plaintext attacks (IND-CPA, resp.), then P̃E
is one-way against chosen ciphertext attacks (IND-CCA, resp.) in the random
oracle model. P̃E still remains one-way against chosen plaintext attacks (IND-
CPA, resp.) in the standard model.

The details will be given in the final paper.
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A Semantic Security of the Proposed Scheme

A.1 Basic Result

Let ZERO(n, e, α) be the set of ciphertexts for m = 0 and ALL(n, e, α) be the
set of ciphertexts for all m ∈ Zn. That is,

ZERO(n, e, α)
4
= {

(
r +

α

r

)e

mod n2 | r ∈ Z∗n is principal}

ALL(n, e, α)
4
= {

(
r +

α

r

)e

+ mn mod n2 | m ∈ Zn and r ∈ Z∗n is principal}.



Define

Reciprocal0(n, e, α)
4
= {(n, e, α, x) | x ∈ ZERO(n, e, α)}

ReciprocalALL(n, e, α)
4
= {(n, e, α, x) | x ∈ ALL(n, e, α)}

Note that we have Reciprocal0(n, e, α) = SMALLRSAK(n, e, α) from their
definition.

Theorem 6. The proposed encryption scheme is secure in the sense of IND-
CPA if and only if Reciprocal0(n, e, α) and ReciprocalALL(n, e, α) are indistin-
guishable.

Proof. Suppose that there exists an adversary B = (B1, B2) which breaks our
encryption scheme in the sense of IND-CPA, where B1 works in the find stage
and B2 works in the guess stage.

We will show a distinguisher D which can distinguish between two distri-
butions Reciprocal0(n, e, α) and ReciprocalALL(n, e, α). Let (n, e, α, x) be the
input to D, where x ∈ ZERO(n, e, α) or x ∈ ALL(n, e, α).

1. D gives pk = (n, e, α) to B1.
2. Then B1 outputs (m0,m1, state).
3. D chooses a bit b randomly and computes

cb = x + mbn mod n2.

D gives (cb, state) to B2.
4. B2 outputs a bit b̃.
5. D outputs ”0” if b̃ = b. Otherwise, D outputs ”1”.

Let P0 denote the probability that D = 0 for x ∈ ZERO(n, e, α) and PALL

denote the probability that D = 0 for x ∈ ALL(n, e, α).
Now if x ∈ ALL(n, e, α), then cb is uniformly distributed over ALL(n, e, α)

for both b = 0 and 1. Therefore, it is clear that

PALL = 1/2.

On the other hand, if x ∈ ZERO(n, e, α), then cb is a valid ciphertext of mb.
Therefore, from our assumption and from Def.2, we obtain that

|P0 − 1/2| = |Pr(b̃ = b)− 1/2|

is non-negligible. Hence
|P0 − PALL|

is non-negligible because PALL = 1/2. This means that D can distinguish be-
tween Reciprocal0(n, e, α) and ReciprocalALL(n, e, α).

Next suppose that there exists a distinguisher D which is able to distin-
guish between Reciprocal0(n, e, α) and ReciprocalALL(n, e, α). We will show an
adversary B = (B1, B2) which breaks our encryption scheme in the sense of



IND-CPA, where B1 works in the find stage and B2 works in the guess stage.
On input pk = (n, e, α), B1 outputs m0 = 0 and m1 ∈ Zn, where m1 is randomly
chosen from Zn. For a given ciphertext cb, B2 gives (n, e, α, cb) to D, where cb

is a ciphertext of mb.
Note that c0 is randomly chosen from ZERO(n, e, α) and c1 is randomly cho-

sen from ALL(n, e, α). Therefore, D can distinguish them from our assumption.
Hence B2 can distinguish them. ut

A.2 Extended Result

Lemma 5. ReciprocalALL(n, e, α) = LARGERSAK(n, e, α).

Proof. First suppose that (n, e, α, c) ∈ LARGERSAK(n, e, α). Then

c =
(
r +

α

r

)e

mod n2

for some r ∈ Z∗n2 . Decrypt c by our decryption algorithm. Then we can find
m ∈ Zn and a principal r′ ∈ Z∗n such that

c =
(
r′ +

α

r′

)e

+ mn mod n2.

Therefore (n, e, α, c) ∈ ReciprocalALL(n, e, α). This means that

LARGERSAK(n, e, α) ⊆ ReciprocalALL(n, e, α).

Next suppose that (n, e, α, c) ∈ ReciprocalALL(n, e, α). Then

c =
(
r +

α

r

)e

+ mn mod n2

for some m ∈ Zn and a principal r ∈ Z∗n. We will show that there exists u ∈ Z∗n2

such that
c =

(
u +

α

u

)e

mod n2 (15)

and u mod n is principal. The above equation holds if and only if

u2 − cdu + α = 0 mod n2, (16)

where ed = 1 mod φ(n)n. For yp such that

(r2 − cdr + α) + pyp(2r − cd) = 0 mod p2,

let up = r + pyp mod p2. Then it is easy to see that

u2
p − cdup + α = 0 mod p2.

Similarly for yq such that

(r2 − cdr + α) + qyq(2r − cd) = 0 mod q2,



let uq = r + qyq mod q2. Then

u2
q − cduq + α = 0 mod p2.

Now consider u such that

u = up mod p2, u = uq mod q2.

Then u satisfies eq.(16). Therefore u satisfies eq.(15). This means that c ∈
LARGERSAK(n, e, α). Hence

ReciprocalALL(n, e, α) ⊆ LARGERSAK(n, e, α).

Consequaently

LARGERSAK(n, e, α) = ReciprocalALL(n, e, α).

ut

A.3 Proof of Theorem 4

From Theorem 6 and Lemma 5, the proposed encryption scheme is IND-CPA
if if Reciprocal0(n, e, α) and LARGERSAK(n, e, α) are indistinguishable. From
the definition we have Reciprocal0(n, e, α) = SMALLRSAK(n, e, α).

B Flaw on the Semantic Security of Rabin-Paillier

Let

SMALLQR(n, e)
4
= {(n, e, x) | x = r2e mod n2, r ∈ Qn}

LARGEQR(n, e)
4
= {(n, e, x) | x = r2e mod n2, r ∈ Qn2}

Rabin-Paillier encryption scheme is IND-CPA if and only if SMALLQR(n, e)
and LARGEQR(n, e) are indistinguishable [GMMV03, Proposition 9].

Galindo et al. further claimed that SMALLQR(n, e) and LARGEQR(n, e)
are indistinguishable if

– SMALLRSAP (n, e) and LARGERSAP (n, e) are indistinguishable (RSA-Paillier
is IND-CPA under this condition) and

– QR(n) and QNR(n, +) are indistinguishable, where

QR(n)
4
= {(n, x) | x ∈ Qn}

QNR(n, +)
4
=

{
(n, x) | x ∈ Z∗n,

(x

n

)
= 1

}

in [GMMV03, Proposition 11].
However, this claim is wrong. In the proof, they say that D1 and D2 are

indistinguishable, where

D1
4
= {x | x = re mod n2, r ∈ Qn}

D2
4
= {x | x = re mod n2, r ∈ Z∗n}.

However, we can distinguish them easily by computing
(

x
n

)
.


