
Analysis of Neural Cryptography

Alexander Klimov, Anton Mityagin, and Adi Shamir

Computer Science Department, The Weizmann Institute, Rehovot 76100, Israel
{ask,mityagin,shamir}@wisdom.weizmann.ac.il

Abstract. In this paper we analyse the security of a new key exchange
protocol proposed in [3], which is based on mutually learning neural
networks. This is a new potential source for public key cryptographic
schemes which are not based on number theoretic functions, and have
small time and memory complexities. In the first part of the paper we
analyse the scheme, explain why the two parties converge to a common
key, and why an attacker using a similar neural network is unlikely to
converge to the same key. However, in the second part of the paper we
show that this key exchange protocol can be broken in three different
ways, and thus it is completely insecure.

1 Introduction

Neural networks have attracted a lot of attention in the last 60 years as a plausi-
ble computational model of how the human brain operates. The model was first
formalized in 1943 by Warren McCulloch and Walter Pitts, and in 1949 Donald
Hebb published his highly influential book Organization of Behavior in which
he studied a variety of neural learning mechanisms. Today the area continues
to be extremely active, and attracts interdisciplinary researchers from a wide
variety of backgrounds (Biology, Medicine, Psychology, Physics, Mathematics,
Computer Science, etc).
Not surprisingly, researchers have also tried to use neural networks in Cryp-

tography. In January 2002, the Physicists Kanter, Kinzel and Kanter [3] proposed
a new key exchange protocol between two parties A and B. It uses the new notion
of chaotic synchronization, which makes it possible for two weakly interacting
chaotic systems to converge even though each one of them (viewed individually)
continues to move in a chaotic way. Many papers and several conferences were
devoted in the last few years to this subject, and an excellent starting point for
this literature can be found in [5].
In this paper we analyse the Kanter, Kinzel and Kanter (KKK) proposal,

which can be viewed as a gradual type of Diffie Hellman key exchange. In both
schemes the two parties start from random uncorrelated t-bit states. The DH
scheme uses a single round in which each party reveals t bits of information about
its state. Based on the received information, each party modifies its state once,
and the new states become identical. The KKK scheme uses multiple (typically
≥ t) rounds in which each party reveals a single bit of information about its
current state, and then modifies its state according to the information revealed



Analysis of Neural Cryptography 287

by the other party. If we denote the sequence of states of the two parties by Ai
and Bi, then distance(Ai+1,Bi+1) < distance(Ai,Bi) and eventually Ai = Bi
for all i ≥ i0. However, the parties do not converge by moving towards a com-
mon fixedpoint which is halfway between them, and both distance(Ai+1,Ai) and
distance(Bi+1,Bi) remain large even for i ≥ i0. From the point of view of the
cryptanalyst the states of the parties become rapidly moving targets, and his
main problem is how to combine bits of information about two converging se-
quences of unknown states. Such multiround synchronization is a new and unex-
plored idea, which makes it possible to use new types of cryptographic functions
which are not based on number theory. A KKK-like scheme can thus provide
a new basis for security, and can give rise to potentially faster key exchange
schemes.

The concrete proposal in [3] uses two neural networks in which each network
tries to learn from the other network’s outputs on common random inputs. In the
standard learning problem a neural network tries to learn a fixed function, and
thus it converges towards it as a fixedpoint. In the mutual learning problem each
network serves both as a trainer and as a trainee, and there is no fixed target
to converge to. Instead, they chase each other in a chaotic trajectory which is
driven primarily by the common sequence of random inputs. We first consider
the nontrivial issue of why the scheme works at all, i.e., why the two chaotic
behaviours become synchronized. We then explain the empirical observation in
[3] that an attacker who uses an identical neural network with the same learning
procedure is extremely unlikely to synchronize his network with the other parties’
network even though he eavesdrops to all their communication. However, in the
last part of the paper we show that the KKK scheme can be broken by at least
three different attacks (using genetic algorithms, geometric considerations, and
probabilistic analysis). The bottom line of our analysis is that even though this
concrete cryptographic scheme is insecure, the notion of chaotic synchronization
is an exciting new concept and a potential source of new insights into how parties
can agree on common secret values as a result of public discussion.

2 The KKK Key Exchange Scheme

Each party in the proposed KKK construction uses a two level neural network:
The first level contains K independent perceptrons, while the second level com-
putes the parity of their K hidden outputs. Each one of the K perceptrons has
N weights wk,n (where 1 ≤ k ≤ K and 1 ≤ n ≤ N). These weights are in-
tegers in the range {−L, . . . , L} that can change over time. Given the N bit
input (xk,1, . . . , xk,N ) (where xk,n ∈ {−1,+1}), the perceptron outputs the sign

(which is also in {−1,+1}) of ~wk · ~xk =
∑N

n=1 wk,nxk,n. The output ok of the
perceptron has a simple geometric interpretation: the hyperplane which is per-
pendicular to the weight vector ~w divides the space into two halves, and the
output of the perceptron for input ~x indicates whether ~x and ~w are on the same
side of this hyperplane or not (i.e., whether the angle between ~w and ~x is less



288 A. Klimov, A. Mityagin, and A. Shamir

than or greater than 90 degrees). The output of the neural network is defined as

the parity O =
∏K
k=1 ok of the outputs of the K perceptrons.

In the KKK scheme the two parties A and B start from random uncorrelated
weight matrices {wk,n}. At each round a new random matrix of inputs {xk,n} is
publicly chosen (e.g., by using a pseudo random bit generator), and each party
announces the output of its own neural network on this common input. If the two
output bits are the same, the parties do nothing and proceed to the next round;
otherwise each party trains its own neural network according to the output of the
other party. The training uses the classical Hebbian learning rule to update the
perceptron weights. However, each party knows only the parity (rather than the
individual values) of the outputs of the other party’s perceptrons, and thus the
learning rule has to be modified: In the KKK proposal (which is also discussed
and justified in [1] and [4]) each party only modifies those perceptrons in his
own network whose hidden outputs differ from the announced output. With this
correction, KKK observed that for some choices of K, N and L, the weight
matrices of the two parties become anti parallel (i.e., wAk,n = −w

B
k,n for all k and

n) after a reasonably small number of rounds, and from then on they always
generate negated outputs and always update their weights into new anti parallel
states. The two parties could become aware of the achieved synchronization by
noticing that their announced outputs were always negated for 20-30 consecutive
steps. Once their networks become synchronized, the two parties could stop and
compute a common cryptographic key by hashing their current weight matrix
(or its negation).

3 The Synchronization Process

In this section we explain the synchronization process by using some elementary
properties from the theory of random walks in bounded domains. In particular,
we analyse the effect of various choices of parameters on the rate of convergence.
The standard Hebbian learning rule forces the mutually learning neural net-

works into anti parallel states. This is unintuitive, complicates our notation, and
makes it difficult to prove convergence by using distance arguments. We thus
modify the original scheme in [3], and update the two weight matrices whenever
the networks agree (rather than disagree) on some input. We modify several
other minor elements, and get a dual scheme in which one of the parties goes
through the same sequence of states and the other party goes through a negated
sequence of intermediate steps, compared to the original KKK proposal. In this
dual scheme the two parties eventually becomes identical (rather than anti paral-
lel). For K = 3, the modified learning procedure is defined in the following way:
Given random public vectors ~x1, ~x2, ~x3 ∈ {−1, 1}

N , each party calculates its
perceptrons’ hidden outputs o1 = sgn( ~w1 ~x1), o2 = sgn( ~w2 ~x2), o3 = sgn( ~w3 ~x3),
where sgn(x) is 1 if x ≥ 0 and -1 otherwise. It then announces its final output
O = o1o2o3. If O

A 6= OB the parties end the current round without changing
any weights. Otherwise, each party updates only perceptrons for which ok = O

(since the common O is the product of three hidden values, each party updates



Analysis of Neural Cryptography 289

the weights of either one or three perceptrons). The updated weights of percep-

tron k are defined by the transformation ~wk ← ~bound−L,L( ~wk − ok ~xk), where
bound−L,L changes any coordinate which exceeds the allowed weight bounds
back to the bound (i.e., −L− 1 is changed to −L and L+ 1 is changed to L).

This learning procedure is quite delicate, and changing the identity of the
updated perceptrons or the way they are updated either destroys the synchro-
nization process or makes it trivially insecure. The goal of this section is to
explain why the two parties converge, and why a third neural network cannot
converge to the same weight matrix by following the same learning procedure.

We first consider a highly simplified neural network which consists of a single
perceptron with a single weight. The convergence of such networks is completely
explained by the existence of the absorbing boundaries −L and L for the range
of allowed weight values. Let ai and bi be the current weights of the two per-
ceptrons. At each round a new random input xi ∈ {−1, 1} is chosen, and the
parties decide to either ignore it, or to simultaneously move their two weights
in the same direction determined by xi. However, if any weight tries to step be-
yond the allowed boundaries, it remains stuck at the boundary while the other
weight moves towards it (unless it is also stuck at the same boundary). Each
weight starts from a random value, and performs a one dimensional random
walk which is driven by the common sequence of random inputs. When neither
one of the weights is stuck at the boundary, their distance remains unchanged
(|ai+1 − bi+1| = |ai − bi|), whereas if one of them is stuck and the other one
moves, their distance is reduced by one. Since each random walk is likely to hit
the boundary infinitely often, their distance will eventually reduce to zero, and
from then on the two random walks will always coincide.

The case of a single perceptron with multiple weights is a simple generaliza-
tion of this case. The two weight vectors move in the same direction determined
by ~xi in a bounded multidimensional box, and along each coordinate the distance
is either preserved or reduced by one. When all these distances are reduced to
zero, the two random walks become identical forever.

Unfortunately, single perceptron neural networks can be trivially attacked
by any neural network which starts from a random initial state and mimics the
operation of the two parties. In fact, except during a short initial period, the
state of all these perceptrons is uniquely determined by the (publicly known)
sequence of inputs ~xi, and is independent of their initial state. Consequently,
the synchronization process of single perceptron neural networks is trivial, and
cannot be used to derive a cryptographically secure common key.

The case of neural networks with multiple perceptrons is more complicated,
since the two parties may update different subsets of their perceptrons in each
round. We thus have to consider a noisy version of the previous convergence
argument, in which occasionally the parties perform uncoordinated moves which
add ~xi to one of A’s perceptrons but adds zero to the corresponding perceptron
of B, which can either increase or decrease the distance between them. Initially
there is some weak correlation between oAk and oBk due to the asymmetry in o

caused by cases in which ~wk ~xk = 0. If the parties make a coordinated move (i.e.



290 A. Klimov, A. Mityagin, and A. Shamir

oAk = oBk ) then
~wAk and

~wBk become closer to each other and thus
~wAk ~xk and

~wBk ~xk will have an increased tendency to have the same sign (and thus make a
coordinated move) in the next round with a new random input. In particular,

if ~wAk =
~wBk for all k then all their future moves will be coordinated, and thus

their weight matrices will remain identical forever. The convergence argument
becomes a delicate balance between the reduced distance caused by coordinated
moves, the increased distance which may be caused by uncoordinated moves,
and the probability of making an uncoordinated move as a function of the cur-
rent correlation between the weights: If we completely rerandomize the weights
whenever the two perceptrons make an uncoordinated move the parties will never
converge, but if we do not penalize such failures then any third party will also
converge to the same state in the same amount of time.

The claimed basis for the security of the scheme in [3] is the proven fact
that given fewer than some number α(L)N of outputs of a parity machine with
fixed weights for random inputs it is information theoretically impossible to
calculate these weights, and the case of changing weights seems to be even harder.
However, the problem of computing the initial weights and the problem of finding
the final weights are completely different, and the attacker is only interested
in the latter problem. To illustrate this point, consider the simple example of
a one dimensional random walk with boundaries. Although it is information
theoretically impossible to recover the initial position a0 from an arbitrarily
longer sequence of state signs, it is easy to predict with overwhelming probability
all the states from some point onwards.

The other evidence of security given in [3] was the fact that an attacker
using the same neural network and a variety of learning rules failed to converge
to the same states in the same number of steps as the two parties (in some
cases the attacker never converged, and in other cases its convergence was so
slow that when the two parties stopped revealing their output bits its state was
still completely different). This is a necessary condition for the security of the
scheme, but far from being sufficient. However, the cause of this failure is not
obvious, and its analysis is very instructive.

Consider an attacker C who starts from the same parity machine with ran-
domly chosen weights. At each step she computes her hidden outputs oC1 , . . . , o

C
K

with respect to the publicly available input. If the parties announce different pub-
lic outputs OA 6= OB, C knows that A and B do not update their weights, and
thus she also skips the current round without updating her weights. If OA = OB

then C tries to mimic the behavior of A and B by guessing which perceptrons
should be updated, and she uses her hidden outputs to do so using the same rule
as the two parties. In [3] it was empirically observed that this strategy does not
allow C to converge even if she starts from a state which is strongly correlated to
that of B. In order to understand why C fails while A and B succeed, we have to
compare the probability that B and C make the same update as A. Consider for
example a neural network with K = 2, i.e. each party has two perceptrons. Let’s
define pk = Pr[o

A
k = oBk ] for random inputs ~xk, and for the sake of simplicity

assume that it is the same for both perceptrons (p1 = p2 = p), and for both



Analysis of Neural Cryptography 291

pairs (A,B) and (A, C) (note that the outputs of different units are independent
since they are functions of independent random inputs). There are four possible
scenarios: (oA0 = oB0 , o

A
1 = oB1 ), (o

A
0 6= oB0 , o

A
1 = oB1 ), (o

A
0 = oB0 , o

A
1 6= oB1 ) and

(oA0 6= oB0 , o
A
1 6= oB1 ), with probabilities p

2, p(1 − p), (1 − p)p and (1 − p)2 re-
spectively. Note that in the second and the third scenarios OA 6= OB, and thus
they will never happen in a round in which A and B decide to update their
weights. However, such scenarios are possible for (A, C), since their outputs can
be different when C is forced to move, and from her perspective it is a bad idea
either to keep the weights unchanged or to update the wrong collection of per-
ceptrons. In other words, the crucial difference between the two parties and the
attacker is that the parties can choose the most beneficial points in time at which
to update their weights, whereas the passive eavesdropper cannot influence this
choice. Consequently, the probability that (A,B) make a coordinated move is

p2

p2+(1−p)2 , while the probability that (A, C) make a coordinated move is p. Since

0 < p < 1, it is easy to see that p2

p2+(1−p)2 > p. Figure 1 shows the probability

of making a coordinated move as a function of p for various numbers of per-
ceptrons K. It is clear from this figure that the choice of K = 2 is optimal for
(A,B). We already demonstrated a difference of behaviour between the (A,B)
and (A, C) cases, but in order to show why such a difference allows the pair
(A,B) to converge with very high probability but the pair (A, C) to converge
only with negligible probability, we have to consider the speed of convergence.

First we have to define the notion of closeness between perceptrons: ρ(~w, ~w′) =

Prx[sgn(~w~x) = sgn( ~w′~x)] for a random input ~x (by definition, 0 ≤ ρ ≤ 1). To
calculate the expected change of ρ after one round in which the parties update
their weights, we use the following formula:

E[∆ρ] = Pr[>]∆ρ> + Pr[⊥]∆ρ⊥,

where we use> to denote coordinated moves (in which the hidden outputs are the
same) and ⊥ to denote uncoordinated moves. For the sake of simplicity consider

again the case of K = 2 and ρ( ~w1, ~w
′
1) = ρ( ~w2, ~w

′
2). Using a large number of

numerical experiments we found the forms of ρ′
>
and ρ′

⊥
. The results are shown

in figure 2, which describes the closeness before and after a coordinated and
an uncoordinated move in the various experiments. In order to combine these
results we approximated ∆ρ> and ∆ρ⊥ by two third degree polynomials which
are described in figure 3. Using this approximation, figure 4 shows the expected
increase of ρ as a function of the current value of ρ for the whole system.

Using figure 4 we can easily explain why the pair (A,B) quickly converges:
∆ρ(~wA, ~wB) > 0, so each step is expected to increase ρ until eventually ρ = 1.
However, for (A, C) the drift is positive only before approximately 0.8, but if C
gets any closer then her drift is negative and thus her strategy is counterproduc-
tive. This explains the experimental result described in [3] — even if ρ(~wB, ~wC)
is relatively high it tends to decrease, and thus such an adversary has a negligible
probability to converge to the common states of A and B.



292 A. Klimov, A. Mityagin, and A. Shamir

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

Fig. 1. The probability of making a coordinated move for one perceptron when K = 2
(“×”), K = 3 (“+”), or K = 4 (“?”)

4 Cryptanalytic Attacks

The security of the scheme was analysed in [3] in terms of its robustness against
a particular attacker who simulates the actions of the two parties. The security
of the scheme against such an attack was experimentally verified in [3], and
mathematically explained in the previous section. In this section we consider
other types of attacks, and show that the KKK scheme can be broken by three
completely different cryptanalytic techniques. Since the proposed cryptographic
scheme is very different from standard schemes, the attacks are also somewhat
unusual.

4.1 The Genetic Attack

Since the cryptosystem is based on the biological notion of neural networks, we
decided to apply a biologically motivated attack based on genetic algorithms. The
general idea behind any genetic algorithm is to simulate a population of virtual
organisms and to impose evolutionary rules which prefer organisms with certain



Analysis of Neural Cryptography 293

0.4 0.6 0.8 1
0.4

0.6

0.8

1

Fig. 2. Experimental form of ρ′⊥ (the lower distribution) and ρ′> (the upper distribu-
tion) for L = 3 and N = 101.

desirable properties. The literature contains very few successful cryptanalytic
applications of such techniques, but a recent exception is the simulated annealing
attack on the PPP scheme described in [2].
In our attack, we simulate a large population of neural networks with the

same structure as the two parties, and train them with the same inputs. At
each stage about half the simulated networks announce an output of +1, and
half announce an output of −1. Networks whose outputs mimic those of the two
parties breed and multiply, while unsuccessful networks die.
We start the attack with one network with randomly chosen weights. At each

step a population of networks evolves according to three possible scenarios:

– A and B have different outputs OA 6= OB, and thus do not change their
weights. Then all the attacker’s networks remain unchanged as well.

– A and B have the same outputs OA = OB, and the total number of attacking
networks is smaller than some limit M . In this case there are 4 possible
combinations of the hidden outputs agreeing with the final output. So, the
attacker replaces each network C from the population by 4 variants of itself,



294 A. Klimov, A. Mityagin, and A. Shamir

0.5 1
−0.2

0

0.2

0.4 0.6 0.8 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Fig. 3. Approximation of∆ρ⊥ (the lower
distribution) and ∆ρ> (the upper distri-
bution).
The polynomials are fc(p) =
−0.6364p3 +1.5516p2− 1.3409p+0.4231
and fn(p) = −1.8666p3 + 3.6385p2 −
2.5984p+ 0.6304.

Fig. 4. The speed of convergence for
(A,B) (the upper line) and (A, C) (the
lower one) for L = 3, N = 101 and
K = 2.

C1, . . . , C4. which are the results of updating C with the standard learning
rule but pretending that the hidden outputs were equal to each one of these
combinations.

– A and B have the same outputs OA = OB but the total number of simulated
networks is larger thanM . In this case the attacker computes the outputs of
all the networks, deletes the unsuccessful networks whose output is different
from OA, and updates the weights in the successful networks by using the
standard learning rule with the actual hidden outputs of the perceptrons.

Shortly after A and B synchronize for the first time, they know this fact,
and the attacker uses the same test to check whether any one of his networks
has the same weights as A. For the recommended choice of parameters (K = 3,
N = 101, L = 3), we tried the attack with a threshold of M = 2500 networks,
and in more than 50% of our tests at least one of the attacking networks C became
synchronized with A even before A and B themselves became fully synchronized.
We successfully applied this attack to several variants of the KKK scheme

using different parameters as well as different rules for updating the weights and
computing the output. The attack is particularly effective for variants in which
the genetic attack has a small local branching rate (e.g., when K = 2).

4.2 The Geometric Attack

We have already described the geometric interpretation of the action of a per-
ceptron. Now we are going to exploit this characterization in order to gain useful



Analysis of Neural Cryptography 295

information about the unknown weights of neural networks which are defined as
the parity of several perceptrons.
Each input can be viewed as K random hyperplanes X1, . . . , XK correspond-

ing to K perceptrons. Each Xi is a hyperplane

fi(z1, . . . , zN ) =

N∑

j=1

xij · zj = 0

in the N -dimensional discrete space U = {−L, . . . , L}N . The weights of a net-
work could be also viewed as K points W1, . . . ,WK in U, Wi = (wi1, . . . , wiK),
while the i-th hidden output is just the side of the half-space (with respect to
Xi) which contains Wi.
Consider an attacking network C that is close enough to the unknown network

A but has a different output for a given input. In fact they have either 1 or 3
different hidden outputs. The second case is less likely to occur so we assume
that only one hidden output of the network C is different from the corresponding
hidden output of A. Consequently, only one pair (WA

i ,W C
i ) is separated by the

known input hyperplane Xi. Of course, we are interested in detecting its index
i.
If the points W C

i and WA
i are separated by Xi then the distance between

them is greater than the distance from W C
i to the hyperplane Xi. W

C
i and WA

i

are close to each other, so the distance from W C
i to Xi has to be small. On the

other hand, if W C
i and WA

i are in the same half-space with respect to Xi then
they are more likely to be far away from the random input Xi (even though we
know that they are close to each other). We thus guess that the index of the
incorrect hidden output is the i for which W C

i is closest to the corresponding
hyperplane Xi, where we compute the distance by ρ(W C

i , Xi) = |fi(W
C
i )|.

Formally, the attacker constructs a single neural network C with the same
structure as A and B, and randomly initializes its weights. At each step she
trains C with the same input as the two parties, and updates its weights with
the following rules:

– IfA and B have different outputs OA 6= OB, then the attacker doesn’t update
C.

– If A and B have the same outputs OA = OB and OC = OA, then the attacker
updates C by the usual learning rule.

– If A and B have the same outputs OA = OB and OC 6= OA, then the attacker

finds i0 ∈ {1, . . . ,K} that minimizes |
N∑
j=0

wCij · xij |. The attacker negates o
C
i0

and updates C assuming the new hidden bits and output OA.

Different attackers starting from randomly chosen states behave indepen-
dently and thus multiple attackers have a higher probability to be successful.
We tried this attack with 100 random initial states and at least one of them
synchronized with A faster than B with probability > 90%.



296 A. Klimov, A. Mityagin, and A. Shamir

4.3 The Probabilistic Attack

As was described in the previous section, it is much easier to predict the position
of a point in a bounded multidimensional box after several moves in its random
walk than to guess its original position. A simple way to do it is to consider
each coordinate separately, and to associate with each possible value i in the
interval {−L, . . . , L} the probability pt(i) = Pr[xt = i]. Initially ∀i, p0(i) =

1
2L+1 and after each move pt+1(i) =

∑
j pt(j), where j are such that if xt =

j then xt+1 = i. Applying this technique to the original scheme we face the
problem that the moves are not known — the attacker does not know which
perceptrons are updated in each round. Fortunately, if we know the distribution
of the probabilities Pk,n,i = Pr[wk,n = i] then using dynamic programming
we can calculate the distribution1 of ~wk ~xk for a given vector ~xk and thus the
probabilities uk(s) = Pr[ok = s]. Using these probabilities we can calculate the
conditional probabilities Uk = Pr[ok = 1|O]:

Uk =

∑
(α1,...,αK):

∏
i
αi=O&αk=1

∏
i ui(αi)∑

(α1,...,αK):
∏

i
αi=O

∏
i ui(αi)

,

because O is publicly known. We can now update the distribution of the weights:
P t+1
k,n,i =

∑
j P

t
k,n,j Pr[w

t
k,n = j ⇒ wt+1

k,n = i], where Pr[wtk,n = j ⇒ wt+1
k,n = i]

is calculated using Uk. Experiments show that in most cases, when A and B
converge to a common ŵk,n, the probabilities Pr[wk,n = ŵk,n] ≈ 1 and thus the
adversary can easily find ŵk,n when A and B decide to stop the protocol.

References

1. M. Biehl, N. Caticha, “Statistical Mechnics of On-Line Learning and Generaliza-
tion”, The Handbook of Brain Theory and Neural Networks, 2001.

2. John A. Clark, Jeremy L. Jacob, “Fault Injection and a Timing Channel on an
Analysis Technique”, Proceedings of Eurocrypt 2002, p. 181.

3. Ido Kanter, Wolfgang Kinzel, Eran Kanter, “Secure exchange of information by
synchronization of neural networks”, Europhys., Lett. 57, 141, 2002.

4. M. Opper, W. Kinzel, “Statistical Mechanics of Generalization”, Models of Neural
Networks III, 151-20, 1995.

5. http://rfic.ucsd.edu/chaos

1 Note that when we calculate the distribution of ~wk ~xk, we assume that the random
variables wk,n are independent. This seems to be true for the original scheme.


