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Abstract. A fair blind signature scheme allows the trustee to revoke
blindness so that it provides authenticity and anonymity to honest users
while preventing malicious users from abusing the anonymity to con-
duct blackmail etc. Although plausible constructions that offer efficient
tricks for anonymity revocation have been published, security, especially
one-more unforgeability and revocability against adaptive and parallel
attacks, has not been studied well. We point out a concrete vulnerability
of some of the previous schemes and present an efficient fair blind sig-
nature scheme with a security proof against most general attacks. Our
scheme offers tight revocation where each signature and issuing session
can be linked by the trustee.

1 Introduction

Fair blind signature schemes are a variant of blind signature schemes; they allow
a trustee to revoke the blindness in such ways that

– given a view of a signature issuing session conducted with an authenticated
user, the trustee can identify the resulting signature (Signature Tracing), or

– given a signature, the trustee can identify the issuing session that yielded
the signature, which eventually identifies the user who conducted the session
(Session Tracing).

Such schemes will play an important role in applications that must offer both
privacy and authenticity while preventing users from abusing anonymity. See
[25] for a concrete example.
The notion of fair blind signatures was introduced independently in [6, 9] for

the construction of anonymous electronic payment schemes. Since then, some
efficient constructions have been shown [23, 7] and several different approaches to
the same goal have been taken [12, 16]. These previous schemes provide efficient
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revocation mechanisms but their security, especially in terms of revocability and
unforgeability against adaptive and parallel attacks, has not been rigorously
studied. Indeed, even the security of ordinary blind signatures against parallel
attacks has been studied formally only in recent works [20, 17, 22, 2, 1].
In some schemes, revocation is limited to linking a signature to its owner.

There are some other schemes that allow a signature to be linked to a particular
issuing session. Such a fine revocation, for instance, allows one to know the
issuing time of the target signature from the session log. Typically, revocation
in this type of schemes reveals the randomness generated by the user during
the issuing session. Accordingly, if a malicious user broadcasts a value via the
Internet and encourages all other users to use it as the random parameter in
issuing sessions, revocation becomes useless. Some known schemes, e.g. [16, 7,
15], are vulnerable against this attack, or they implicitly resort to on-the-fly
freshness checking, which is expensive in practice.
Our contribution is an efficient fair-blind signature scheme that is secure

against adaptive and parallel attacks. Assuming the existence of ideal hash func-
tions [5], its blindness is proven under the decision Diffie-Hellman assumption,
and revocability and one-more unforgeability against adaptive and parallel at-
tacks are proven under the discrete logarithm assumption. Another advantage of
our scheme is that it offers tight revocation. That is, given a signature, revocation
identifies the issuing session that uniquely produced the signature, and, given
a session view, revocation identifies the unique signature created in the session.
Naturally, once such tight revocability is achieved, the scheme also provides
one-more unforgeability since tight and bi-directional revocability guarantees
one-to-one mapping between issuing sessions and resulting signatures.
The rest of this paper is organized as follows. Section 2 defines the security

of fair blind signatures. Section 3 reviews underlying ideas and building blocks.
Section 4 presents our scheme in detail. A security analysis is given in Section 5.
Section 6 gives several remarks. It includes weakness of our scheme, modifica-
tions, and open problems.

2 Definitions

Let (GS ,S,U ,V) be a blind signature scheme where GS is a signing key gen-
eration algorithm, S and U are interactive Turing machines called signer and
user, and V is a signature verification algorithm. (Please refer to [17, 22] for a
formal functional definition of blind signature schemes.) Informally, a fair blind
signature scheme with off-line trustee is a blind signature scheme with five addi-
tional probabilistic polynomial-time algorithms, GT , Rsig, Rsid,Msig, andMsid

as follows.

GT is a revocation key generation algorithm that takes a public key of a signer,
say pk, and outputs a private and public revocation key pair. The keys can
be independent of the public key of the signer (thus only one revocation key
pair for all signers); (rsk, rpk)← GT (1

n, pk).
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Rsig is a revocation algorithm that generates signature identifier Isig that iden-
tifies the signature yielded from the target session. It takes the view of the
signer during the target session and revocation key; Isig ← Rsig(viewi, rsk).

Rsid is a revocation algorithm that generates session identifier Isid that identifies
the session that has produced target signature-message pair Σm. Isid ←
Rsid(Σm, rsk).

Msig is a matching algorithm that examines whether Isig matches to signature-
message pair Σm or not. It outputs 1 if they match, 0 otherwise; 0/1 ←
Msig(Isig, Σm).

Msid is a matching algorithm that examines whether Isid matches to viewi or
not. It outputs 1 if they match, 0 otherwise; 0/1←Msid(Isid, viewi).

These algorithms also take public data such as pk and rpk if needed. Although
viewi include everything that the signer can see during the session, which includes
his own private key, what is really necessary to complete revocation differsMss

differ depending on the specific revocation mechanism used.
We start the security definitions with traceability. Intuition states that a

scheme is session traceable if no adversary can output a signature that can not
be associated with the corresponding session, or can be associated with more
than two sessions by revocation. Accordingly, it assures that each valid signature
should be linked to a single session. Similarly, a scheme is signature traceable
if no adversary can output two signatures that will be associated to the same
session. Hence, it assures that every session should be linked to a single valid
signature. If a scheme provides both types of traceability, shown below, we say
that the scheme offers tight revocation.

Definition 1. (Signature Traceability) A fair blind signature scheme is signa-
ture traceable if, for any probabilistic polynomial-time algorithm U ∗ that, after
interacting with legitimate signer S at most ` times in an adaptive and arbitrarily
interleaving manner, outputs

– a valid signature-message pair, say Σm, such that, for Isig = Rsig(viewi, rsk),
Msig(Isig, ΣM ) = 0 holds for all i = 1, . . . , `, or

– two valid and different signature-message pairs, say Σm0, Σm1, such that,
there exists i in 1, . . . , ` such that Msig(Isig, Σm0) = Msig(Isig, Σm1) = 1
where Isig = Rsig(viewi, rsk),

with probability at most 1/nc for sufficiently large n and some constant c. The
probability is taken over the coin flips of GS, GT , S, and U

∗.

Definition 2. (Session Traceability) A fair blind signature scheme is session
traceable if, for any probabilistic polynomial-time algorithm U ∗ that, after inter-
acting with legitimate signer S at most ` times in an adaptive and arbitrarily
interleaving manner, outputs a valid signature-message pair Σm such that

– for Isid = Rsid(Σm, rsk),Msid(Isid, viewi) = 0 holds for all i = 1, . . . , `, or
– there exists i, j, i 6= j such thatMsid(Isid, viewi) =Msid(Isid, viewj) = 1,
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with probability at most 1/nc for sufficiently large n and some constant c. The
probability is taken over the coin flips of GS, GT , S, and U

∗.

Note that, in the random oracle model, these success probabilities also depend
on the choice of random oracles.
Next is blindness, which informally means that any adversary that colludes

with the signer can distinguish two session views only with negligible advantage
when one of the views results in a given signature.

Definition 3. (Blindness) Let S∗ and D∗ be probabilistic poly-time algorithms
that play the following game with honest user U0 and U1.

1. (pk, sk)← GS(1
n), (rsk, rpk)← GT (1

n, pk)
2. (msg0,msg1)← S

∗(sk, rpk)
3. For b ∈U {0, 1}, msgb is given to U0, and msg1−b is given to U1.
4. S∗ engages in the signature issuing protocol with U0, U1 in arbitrary order.
5. Resulting signature Σ0 for msg0 is given to D

∗. D∗ also allowed to take any
information from S∗.

6. D∗ outputs b′ ∈ {0, 1}.

The signature scheme is blind if, for all polynomial-time S∗ and D∗, b′ = b
happens with probability at most 1/2 + 1/nc for sufficiently large n and some
constant c. The probability is taken over the coin flips of GT , GS, S

∗, D∗ and
U0, U1 and b.

Finally, we define one-more unforgeability in such a sense that it is infeasible
to output `+ 1 valid signatures after interacting with the signer ` times.

Definition 4. (One-more unforgeability) A blind signature scheme is (`, `+ 1)
unforgeable if, for any probabilistic polynomial-time algorithm U ∗, U∗ outputs
` + 1 valid signatures with probability at most 1/nc for sufficiently large n and
some constant c after interacting with legitimate signer S at most ` times. The
interaction can be done in an adaptive and arbitrarily interleaving manner. The
probability is taken over the coin flips of G, S, and U∗.

It is important to see that if a scheme provides tight revocability, the scheme
is one-more unforgeable since tight revocability assures that there is one-to-one
correspondence between successful sessions and valid signatures. Accordingly, it
suffice to prove blindness and tight revocability for our scheme.
The above definitions are weak since the adversaries have no access to the

trustee. Thus it is important for the trustee not to show the tracing information
to anybody to prevent the adversaries from using the trustee as an oracle. When
revocation is done only for private purposes such as criminal investigation, such
weak definitions may suffice. Although our scheme provides security only in a
weak sense, one can define a stronger notion of security by modifying the above
definitions. Informally, the scheme provides strong signature/session traceability
if traceability is retained even if the private revocation key rsk is given to U ∗ in
Definition 1 and 2. Similarly, we say a scheme provides strong blindness if blind-
ness is retained even if S∗ and D∗ are allowed to ask the trustee for revocation
except for the sessions and the signature in question.
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3 Underlying Idea and Building Blocks

3.1 Efficient Revocation Mechanism

We take an approach similar to that introduced in [24, 7]. Let xt, yt(= gxt)
be the revocation key pair. Let z be a part of the signer’s public key. To ask a
signature, the user sends (z1/γ , gγ) to the signer where γ is a blinding factor that
will be used later in blinding. The signer then blindly issues a signature bringing
a pair (z1/γ , yt) into the issuing protocol in such a way that a valid signature
can be obtained only if the pair is blinded into (z, yt

γ). The user can get a valid
signature as he can do the conversion by taking the γ-th power. The signer is
left blind since z is common to all signatures and (yt, g

γ , yt
γ) is assumed to be

indistinguishable from (yt, g
γ , yt

γ′) with random γ′ used for another signature.

Given a signature that contains yt
γ , the trustee can trace the session that

contains gγ by computing (yt
γ)1/xt(= gγ). Similarly, given a session log that

contains gγ , the trustee can trace the resulting signature that must contain yt
γ

by computing (gγ)xt(= yt
γ).

For the above revocation mechanism to function, we must be sure that blind-
ing by exponentiation, (z1/γ , yt)→ (z, y

γ
t ), is the only way to get a valid signa-

ture. A blind signature scheme from [1] suits this purpose. As well as its security
against adaptive and parallel attacks, one good property we can exploit is the
restrictive blinding property. That is, when the signer issues a signature based on
(z, z1) a user has to blind it into (z

γ , zγ1) to have the signature correctly blinded.
So if we set (z, z1) = (z

1/γ , yt), it must be transformed into (z, yt
γ).

This trick, however, offers tight revocation only if all users are honest in
choosing a unique γ in each session. Our idea for tight revocation is to add extra
randomness v to the blinding factor from the signer’s side so that yt

γv is involved
in the signature. With this adaptation, the signer can randomize blinding factor
γ chosen by the user into γv so that it is unique in every session.

3.2 Verifiable Encryption of DL

For the reduction in our security proof to work, we need the trustee (simulator)
to be able to extract not only yt

γ but also γ itself. For this purpose, a user
encrypts γ with the public encryption key of the trustee and proves that γ can
certainly be recovered from the ciphertext. Generally speaking, an encryption
scheme accompanied by a non-interactive proof that assures the receiver that the
embedded plaintext satisfies some poly-time computable predicate is often called
a verifiable encryption scheme. Concrete examples can be seen in the literature,
e.g. [4, 3, 8].

Let C = (zu, ξ) = (z
1/γ , gγ) be a commitment of witness γ. Let (GE , E ,D)

be a public-key encryption scheme. Let (ek, dk) ← GE(1
k) and E ← Eek(γ;ω)

where ω is a random tape. Let R be a relation between C and E such that

(C,E) ∈ R ⇔ logzu
z ≡ logg ξ ≡ Ddk(E) mod q.
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Let (P,V) be a non-interactive zero-knowledge proof (argument) system for re-
lation R such that P ← P(C,E, γ, ω, ek) and 0/1← V(C,E, P ). We assume that
it provides correctness, soundness, and computational zero-knowledge. Note that
when it is zero-knowledge argument the soundness is conditionally achieved un-
der some intractability assumptions.
On top of this standard security, we need it to be simulatable in such a

sense that, for C = (z1/γ , gγ), there exists a poly-time simulator which, with-
out being given γ and dk, outputs (Ẽ, P̃ ) such that (C, Ẽ) 6∈ R and (Ẽ, P̃ ) is
computationally indistinguishable from correct (E,P ) that satisfies (C,E) ∈ R
and V(C,E, P ) = 1. We say that a verifiable encryption scheme is secure and
simulatable if it provides all these properties. Note that we only consider passive
adversaries who have no access to the decryption oracle. When the encryption
scheme is semantically secure against chosen plaintext attacks and the proof sys-
tem is a public-coin honest verifier zero-knowledge proof made non-interactive
with the Fiat-Shamir technique [11], simulatability is provided under the em-
bedded assumption for the semantic security of the encryption scheme and the
random oracle assumption.
Appendix A and B show two examples of verifiable encryption that provide

all of the security properties we need in our construction. These schemes have
different flavors. The scheme in Appendix A is taken from [3] and is based on
Okamoto-Uchiyama encryption [19] combined with the statistical zero-knowledge
argument of [14]. In this scheme, it is assumed that the decryption key is not
given to the adversary in order to assure soundness. Accordingly, if this scheme is
integrated in our construction, one has to assume that the trustee and the users
are not colluding. The second scheme in Appendix B is newly constructed based
on ElGamal encryption and a log-round perfect zero-knowledge proof. Though
its efficiency is worse than that of the first one, this scheme provides a stronger
property in that soundness holds even if the decryption key of the trustee is
given to the adversary.

4 Our Scheme

[Signing Key Generation]
Let G be a probabilistic polynomial-time algorithm that generates a group

parameter, (p, q, g, h) where p, q are primes and g, h are generators of subgroup
of order q in ZZp

∗. A signer selects three hash functions H1 : {0, 1}
∗ → 〈g〉,

H2,3 : {0, 1}
∗ → {0, 1}|q| and generates public-key pk = (p, q, g, h, y, z) and

private-key sk = (x) as follows;

(p, q, g, h)← G(1n),
x ∈U ZZq,
y = gx mod p,
z = H1(p, q, g, h, y).

All arithmetic operations are done in 〈g〉 hereafter unless otherwise noted.

[Revocation Key Generation]
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Given the public key of a signer, the trustee generates secret-key rsk = (xt, dk)
and public-key rpk = (yt, ek) where xt ∈U ZZ∗

q , yt = gxt , and ek, dk are the key
pair for verifiable encryption scheme described in Section 3.2.
Depending on the encryption algorithm E used for verifiable encryption,

(ek, dk) can be common for all signers. Similarly, if (p, q, g) are common as
system-wide parameters, xt, yt can be common, too.

[Signature Generation]
Here, we describe the signature issuing protocol in a higher level. Details can

be found in Figure 1.

1. The user chooses blinding factor γ and computes zu = z1/γ and ξ = gγ .
He then executes verifiable encryption where γ is encrypted into E and the
relation among zu, ξ, E is proven by providing P .

2. The signer verifies (E,P ). He generates v randomly, and computes z1 = yt
v

and z2 = zu/z1. He then proves to the user that z1 is made as it should
be by providing Schnorr zero-knowledge proof Ps = (σs, cs) where cs =
H3(z1‖yt

rs) and σs = rs − csv mod q for rs ∈U ZZq. The proof will be

verified by the user as cs
?
= H3(z1‖yt

σsz1
cs).

3. Based on y, z1, z2, the signer and the user engages in an interactive proof
protocol. For the signer, the protocol is a witness indistinguishable proof of
knowledge of

logg y ∨ (logg z1 ∧ logh(zu/z1)).

The signer converts the proof into the one for

logg y ∨ (logg ζ1 ∧ logh(z/ζ1))

by exponentiating (z1, zu)
γ
→ (ζ1, z) and blinding it with the standard di-

version technique [18]. The converted proof is eventually transformed to a
signature with Fiat-Shamir technique.

4. The signer stores ξv as the identity of this session.
5. The user outputs a signature, Σ = (ζ1, ρ,$, σ1, σ2, δ) for message m.

Note that ξv can be published, though it is not necessary to the user. The signer
may provide extra Schnorr zero-knowledge proof that proves logξ(ξ

v) = logyt
z1.

[Verification]
A signature-message pair, (Σ,m), is valid if it satisfies

$ + δ
?
= H2(ζ1‖g

ρy$‖gσ1ζ1
δ‖hσ2(z/ζ1)

δ‖m) mod q. (1)

[Revocation]

Signature Tracing: Given valid (zu, ξ, E, P ) and ξv, the trustee computes
Isig = (ξ

v)xt . Observe that

Isig = (ξ
v)xt = gγvxt = yt

γv = ζ1. (2)

Thus, Isig identifies the resulting signature.
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Signer User

sk, pk, rpk pk, rpk,m

γ ∈U Z∗

q

zu = zγ
−1

ξ = gγ

E = Eek(γ;ω)
P = P((zu, ξ), γ, ω, ek)

¾(zu, ξ), E, P

V((zu, ξ), E, P, ek)
?
= 1

v ∈U ZZ∗

q

z1 = yt
v, z2 = zu/z1

Ps = Ps(z1, yt, v)

u, s1, s2, d ∈U ZZq

a = gu

b1 = gs1z1
d

b2 = hs2z2
d

-Ps, z1, a, b1, b2 z1, b1, b2
?
∈ 〈g〉

Vs(z1, yt, Ps)
?
= 1

ζ1 = z1
γ , ζ2 = z/ζ1

t1, t2, t3, t4, t5 ∈U Zq
α = agt1yt2

β1 = bγ1g
t3ζt51

β2 = bγ2h
t4ζt52

ε = H2(ζ1‖α‖β1‖β2‖m)
¾ e

e = ε− t2 − t5 mod q
c = e− d mod q
r = u− cx mod q

-r, c, s1, s2, d ρ = r + t1 mod q
$ = c+ t2 mod q
σ1 = γs1 + t3 mod q
σ2 = γs2 + t4 mod q
δ = d+ t5 mod q

$ + δ
?
= H2(ζ1‖g

ρy$‖gσ1ζ1
δ‖hσ2ζδ2‖m)

↓ ↓

ξv (ζ1, ρ,$, σ1, σ2, δ)

Fig. 1. The signature issuing protocol. The session aborts if any of the checks (
?
=,

?
∈)

fails. E ,P are from the underlying verifiable encryption scheme of Section 3.2. (Ps,Vs)
is a Schnorr-type proof of knowledge of v w.r.t yt and z1. The trustee is off-line, i.e.,
not involved in the issuing protocol.
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Session Tracing: Given a valid signature, the trustee computes Iss = ζ
1/xt

1 .
Observe that

Iss = ζ1
1/xt = z1

γ/xt = yt
vγ/xt = gvγ = ξv. (3)

Since ξv is stored or published by the signer, Iss identifies the session that
issued the signature.

5 Security Proofs

5.1 Correctness

Theorem 1. If the signer and the user follow the issuing protocol, the protocol
completes with a valid signature with probability 1.

Proof. There are four verifications denoted by
?
= in the issuing protocol. The

verification for P and Ps in each side will accept the proof with probability 1
due to the correctness of these proof systems. It is clear that z1, b1, b2 are in 〈g〉.
For the last one, which is equivalent to the verification predicate, observe that
the following holds.

$ + δ = c+ t2 + d+ t5 = e+ t2 + t5 = ε (mod q)

gρy$ = gr+t1yc+t2 = gr+cxgt1yt2 = agt1yt2 = α

gσ1ζ1
δ = gγs1+t3z1

γδ = (gs1z1
d)γgt3z1

γt5 = b1
γgt3ζ1

t5 = β1

hσ2ζ2
δ = hγs2+t4ζ2

d+t5 = hγs2+t4(zu/z1)
γd(z/ζ1)

t5 = b2
γht4ζ2

t5 = β2

Thus, the protocol always stops with a valid signature if both parties follow the
protocol. ut

5.2 Blindness

Theorem 2. The proposed scheme is blind if all hash functions are random or-
acles, the decision Diffie-Hellman problem is intractable, and the underlying ver-
ifiable encryption scheme is secure and simulatable in the random oracle model.

Proof. Suppose that (S∗,D∗) is successful in breaking blindness with probability
1/2+ε where ε is not negligible. We show that S∗ and D∗ can be used to solve the

DDH problem. Define DH = {(X1, X2, X3) ∈ 〈g〉
3
| loggX1 loggX2 = loggX3}

and RND = {(X1, X2, X3) ∈ 〈g〉
3
}. Let (A,B,C) ∈ 〈g〉

3
be a DDH instance,

i.e., taken from DH or RND with equal probability. Let (A,B,C) = (ga, gb, gc).
If any of a,b, c is zero, we can immediately determine whether the instance is
in DH or not. So we assume that none of them are zero hereafter.
Simulation proceeds as follows. We simulate hash function H1 so that it

outputs Br1i by selecting r1i ∈U ZZ∗
q for each fresh query. Suppose that r1 is

selected for z = H1(p, q, ...) = Br1 . Next choose r2 ∈u ZZ
∗
q and set the revocation

public key as yt = Ar2 . Select d ∈U {0, 1} and execute the issuing protocol with
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S∗ twice. Label the executions run0 and run1. In run1−d, we simply follow the
protocol. In rund, we first set zu = gr1 and ξ = B. Observe that z, zu, and ξ
are perfectly simulated no matter whether (A,B,C) is from DH or RND since
z, zu, ξ satisfies logzu

z = logg ξ = (logg B). We then simulate E by encrypting
r3 ∈U ZZ∗

q . Since r3 6= logg B in general, ((zu, ξ), E) 6∈ R. However, the simulator
can produce P in such a way that (E,P ) is computationally indistinguishable
from the real ones since we assume that the underlying verifiable encryption is
simulatable in such sense. Now send zu, ξ, E, P and receive Ps, z1 and etc from
S∗. At this point, we rewind S∗ to extract v from Ps by applying the Forking
Lemma [21]. We then continue and complete the issuing session.
For message m0 is given by S

∗ at the beginning, the simulator generates a
signature-message pair, say (Σ,m0), with regard to ζ1 = Cr2v. Other variables
except for ζ1 in Σ are generated by using the standard zero knowledge simulation
technique; randomly choose ρ,$, σ1, σ2, δ, and then freely define H2 so that they
look consistent. Given (Σ,m) and views from S∗, distinguisher D∗ outputs d′.
If d′ = d, we conclude that (A,B,C) is in DH. It is in RND, otherwise.
We now claim that if (A,B,C) ∈ DH, Σ is a valid signature that could have

been produced in rund. Observe that, for z, z1 used in runb,

(zu, z, z1, ζ1) = (g
r1 , gbr1 , gar2v, gcr2v).

So if ab = c, we have a consistent blinding factor, γ = b which satisfies γ =
logzu

z = logz1 ζ1 for zu and z1 used in rund. Furthermore, there are blinding
factors t1, t2, t3, t4, t5 that convert the view of rund into the remaining elements
in Σ. On the other hand, Σ could have been produced by run1−d only with
negligible probability as zu, z1 should differ in run1−d. Accordingly, given Σ, D

∗

outputs d′ = d with probability 1/2 + ε.
Next, we claim that if (A,B,C) ∈ RND, Σ is statistically independent of

the views of the signer in run0 and run1 since logzu
z 6= logz1 ζ1 holds for (zu, z1)

in both runs except with negligible probability. Hence, d is also statistically
independent of the view of the signer, and d′ = d happens with probability close
to 1/2 except for a negligible fraction.
In total, the success probability is 1/2(1/2+ε)+1/2(1/2) = 1/2+ε/2, which

contradicts the DDH assumption when ε is not negligible.
ut

5.3 Tight Revocability

Theorem 3. The proposed scheme is session traceable if all hash functions are
random oracles, the discrete logarithm is intractable, and the soundness condition
of the underlying verifiable encryption scheme holds.

Proof. Here we must show two properties. We first show that it is infeasible for a
user to produce a signature Σ? = (ζ1, ρ,$, σ1, σ2, δ) such that logzu

z 6= logz1 ζ1
for all (zu, z1) used in issuing sessions. We then show that a valid signature
cannot be linked to more than one session.
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Assume that having at most qh accesses to H2 and asking at most ` signa-
tures to S, U∗0 outputs signature Σ

? = (ζ1, ρ,$, σ1, σ2, δ) that satisfies logzu
z 6=

logz1 ζ1 for (zu, z1) used in any session. Here, qh and ` are bound by a poly-
nomial of security parameter n. Let ε0 be the success probability of U

∗
0 , which

is not negligible in n. We randomly fix an index Q ∈ {1, . . . , qh} and regard
U∗0 as successful only if the resulting signature corresponds to the Q-th query
to H2. (If it does not correspond to any query, U

∗
0 is successful only with neg-

ligible probability due to the randomness of H2.) Accordingly, it is equivalent
to assuming an adversary, say U∗1 , that asks H2 only once and succeeds with
probability ε1 ≥ ε0/qh. By using U

∗
1 , we construct machineM1 that solves the

discrete-log problem. Let (p,q,g,Y) be an instance of the discrete-log problem
to solve X = loggY in ZZq.

Reduction Algorithm:M1 first sets (p, q, g) := (p,q,g). It also generates key
pair (dk, ek) for the underlying verifiable encryption scheme. It then flips a coin
χ ∈U {0, 1} to select either y := Y (case χ = 0) , or h := Y (case χ = 1).

Case χ = 0:
Intuition: We set y = Y and attempt to extract the y-side witness by sim-

ulating the signing oracle with z-side witness, which is logg z1 and logh z2. We
run U∗1 twice with a different answer from H2 and apply the Forking Lemma.
It should cause a change of either δ or $ in the resulting signatures. If we are
lucky, we have different $’s and can extract the y-side witness.

1. M1 sets y = Y.
2. M1 selects w,w0, w1 ∈U ZZ∗

q and sets h := gw, z := H1(p‖q‖g‖y) = gw0 ,
and yt = gw1 .

3. M1 runs U
∗
1 and simulates S for i-th query in the following way.

(a) Given (zui, ξi, Ei, Pi) from the user, check Pi and reject if incorrect.
Otherwise, decrypt Ei → γi.

(b) Compute ai := griyci for ci, ri ∈U ZZq.
(c) Compute w1i = w1vi mod q and w2i = (w0/γi − w1i)/w mod q for vi ∈U

ZZ∗
q . Then set z1i = gw1i and z2i = hw2i .

(d) Compute Psi by using legitimate witness vi.
(e) Compute b1i := gu1i and b2i := hu2i with u1i, u2i ∈U ZZq.
(f) Send Psi, ai, b1i, b2i to U

∗
1 .

(g) Given ei from U
∗
1 , compute di := ei− ci mod q, s1i := u1i−diw1i mod q,

and s2i := u2i − diw2i mod q.
(h) Send ri, ci, s1i, s2i, di to U

∗
1 .

M1 simulates H2 by returning ε ∈U ZZq.
4. U∗1 outputs a signature, say (ζ1, ρ,$, σ1, σ2, δ), that corresponds to ε.
5. Reset and restart U∗1 with the same setting.M1 simulatesH2 with ε

′ ∈U ZZq.
In this second run,M1 also uses the same random tape.

6. U∗1 outputs a signature, say (ζ1, ρ
′, $′, σ′1, σ

′
2, δ

′), that corresponds to ε′.
7. If $ 6= $′,M1 outputs X := (ρ− ρ

′)/($′−$) mod q. The simulation fails,
otherwise.
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Case χ = 1:
Intuition: We set h = Y, z = gw1hw2 with random w1, w2, and attempt

to extract different representation of z, that leads logg h. The signing oracle is
simulated with y-side witness except for one query. For the one randomly chosen
J-th query, we use y-side witness and z-side witness, i.e., (w1, w2), together.
We rewind U∗1 to apply the Forking Lemma. But this time, we fork the process
by changing d in the J-th issuing session, which is used as a challenge to the
z-side proof. We can answer to two different d’s in the J-th session since the
z-side witness in this session is (w1, w2). Now if δ is sensitive to the change of d,
we have different δ’s and can extract the z-side witness which is different from
(w1, w2).

1. M1 sets h = Y.
2. M1 selects x ∈U ZZq and sets y := gx. It also selects w1, w2 ∈U ZZq and sets
z := H1(p‖q‖g‖y) = gw1hw2 .

3. M1 selects J ∈U {1, . . . , `}. It also selects vJ and set yt = gw1/vJ .
4. M1 runs U

∗
1 and simulates the signing oracle for the i-th query in the fol-

lowing way.
(a) For i 6= J ,M1 follows the protocol with y-side witness, x.H2 is simulated

by returning random choices from 〈g〉.
(b) For i = J , M1 engages in the issuing protocol using x and (w1, w2) as

follows.
i. Given (zui, ξi, Ei, Pi) from the user, check Pi and reject if incorrect.
Otherwise, decrypt Ei → γi.

ii. Set z1J = yt
vJ . (Accordingly, z1J = gw1 and z2J = hw2 .)

iii. Compute aJ = guJ , b1J = gu1J , b2J = hu2J with uJ , u1J , u2J ∈U ZZq.
iv. Send (vJ , aJ , b1J , b2J ) to U

∗
1 .

v. Given eJ from U
∗
1 , choose dJ ∈U ZZq and compute cJ := eJ −

dJ mod q, rJ := uJ − cJx mod q, s1J := u1J − dJw1 mod q, and
s2J := u2J − dJw2 mod q.

vi. Send (rJ , cJ , s1J , s2J , dJ ) to U
∗
1 .

M1 simulates H2 by returning ε ∈U ZZq.
5. U∗1 outputs a signature, say (ζ1, ρ,$, σ1, σ2, δ), that corresponds to ε.
6. Rewind and restart U∗1 with the same setting. Then choose I ∈U {0, . . . , `}.
– If I = 0,M1 simulates H2 by returning ε

′ ∈U ZZq. Otherwise, set ε
′ = ε.

– If I 6= 0 and runJ have not yet been completed before the query to
H2 is sent,M1 simulates the execution by using both y-side and z-side
witnesses as above choosing d′J ∈U ZZq. Otherwise, M1 simulates only
with y-side witness choosing d′J = dJ .

7. U∗1 outputs a signature, say (ζ1, ρ
′, $′, σ′1, σ

′
2, δ

′), that corresponds to ε′.
8. If δ = δ′, simulation fails. Otherwise, M1 computes w

′
1 = (σ1 − σ

′
1)/(δ

′ −
δ) mod q, w′

2 = (σ2−σ
′
2)/(δ− δ

′) mod q, and outputs X = (w1−w
′
1)/(w

′
2−

w2) mod q.

Sketch of success probability evaluation:
Suppose that all random variables chosen by the simulating signer are determined
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purely from the random tape so that they are fixed before the simulation starts.
We consider how δ in Σ? is sensitive to the alteration of ε and {dik+1

, . . . , di`}
which are given after ε is given to U∗1 . Observe that independent variables given
to U∗1 are p, q, g, h, y, H1, H2, sidi, ai, b1i, b2i, di for all i, and ε and the random
tape of U∗1 . All other variables are uniquely determined by these independent
variables and outputs of U∗1 . We wrap all these independent variables into Λ,
except for {ε, dik+1

, . . . , di`}, which is denoted by Dε hereafter. Let D denote
Dε \ {ε}.
Let S be the set of all (Λ,Dε) that leads U

∗
1 to a success, i.e., PrΛ,Dε

[(Λ,Dε) ∈
S] ≥ ε1. According to the Splitting Lemma [11, 22], with probability at least
ε1/2, randomly selected Λ satisfies PrDε

[(Λ,Dε) ∈ S] ≥ ε1/2. Once Λ is fixed, δ
is uniquely determined by Dε. By δ ← Dε, we denote the map from (Λ,Dε) ∈ S
to δ. If (Λ,Dε) 6∈ S, we denote ⊥ ← Dε.
Define function ψ as

ψ(δ) = Pr
Dε

[δ ← Dε].

Let δmax be the value of δ that maximizes ψ(δ). That is, δmax is the value
of δ that is most likely to appear in Σ?. Let ψmax = ψ(δmax). We consider two
cases.

Case 1 (ψmax is not negligible) :

In this case, for randomly chosen Dε and D
′
ε, the adversary is likely to out-

put signatures that contain δmax with sufficiently large probability. When δ is
the same for different ε from H2, $ must differ as δ + $ = ε. Consequently,
with sufficient probability, we obtain $ 6= $′ with which y-side witness can be
extracted as written in Step-7 of Case χ = 0. For more details, we refer to the
proof of Lemma 3 of [1].

Case 2 (ψmax is negligible) :

In this case, δ tends to change if Dε is altered. Due to [1], randomly chosen
Dε and D

′
ε that differ only at one position lead U

∗
1 to output two correspond-

ing signatures (ζ1, ρ,$, σ1, σ2, δ) and (ζ1, ρ
′, $′, σ′1, σ

′
2, δ

′) with sufficiently large
probability. From these signatures, we can extract w′

1, w
′
2 that satisfy ζ1 = gw

′
1

and ζ/ζ1 = hw
′
2 . By assumption, logzu

z 6= logz1 ζ1. So w1 6= w′
1 and w2 6= w′

2

holds. Accordingly X = logg h = (w1 − w
′
1)/(w

′
2 − w2) mod q is computable.

The probability distribution over these cases depends on Λ and the strategy
of U∗1 . Note that the distribution of Λ does not depend on the choice of χ as the
protocol is witness indistinguishable and the public key is generated so that it
distributes uniformly. Accordingly, the coin flip of χ turns the simulation to the
proper case with probability 1/2.
In the above, we proved that for ζ1 in a valid signature, there exists at least

one session that includes (zu, z1) that satisfies logzu
z = logz1 ζ1. Since z1(= zu

v)
depends on random v chosen by the honest signer and zu is in 〈g〉 when P is
valid, z1 is unique among all sessions with overwhelming probability if only
polynomially many sessions are executed.
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We also need to prove that a signature cannot be produced without interact-
ing with the legitimate signer. This can be done by a standard argument that
uses the Forking Lemma and so is omitted here.
Finally, we need to show that a session that includes target (zu, z1) can be

identified from ζ
1/xt

1 . For this, observe that the rightmost equality in Equation 3
holds because ξ = gγ for γ = logzu

z = logz1 ζ1 with overwhelming probability
due to the soundness of P . ut

Theorem 4. The proposed scheme is signature traceable if all hash functions are
random oracles, the discrete logarithm is intractable, and the soundness condition
of the verifiable encryption scheme holds.

Proof. We need to show that no adversary can generate a signature containing
ζ1 such that ζ1 6= (ξ

v)xt for any (ξv) stored by the signer. This can be done in
the same way as done in the proof of Theorem 3.
In the following, we show that it is infeasible for the user to output two valid

signatures that contain the same ζ1 regardless of the user’s behaviour.
The proof is done by contradiction. Suppose that there exists an adversary U ∗2

that outputs two valid signatures that result in the same session by revocation
with success probability ε2. Here, ε2 is not negligible in n and U

∗
2 is allowed to

interact with S at most ` times in an arbitrary fashion. Let ` ≥ 1. (` = 0 was
considered in Theorem 3.)
Now there exist two queries to H2 that correspond to those two signatures.

In a similar way as used in the proof of Theorem 3, we guess the indexes of
these queries and regard U∗2 as being successful only if the guess is correct.
Accordingly, this is equivalent to an adversary, say U∗3 , that asks H2 only twice
and succeeds with probability ε3 = ε2/

(

qh

2

)

in producing two signatures in the
expected relation.
We construct a machine M2 that, given (p,q,g,Y), solves X = loggY in

ZZq by using U
∗
3 .

Reduction algorithm:

1. M2 sets (p, q, g) := (p,q,g).
2. M2 sets either y = Y or y = gx for x ∈U ZZ∗

q by flipping coin χ.
3. M2 selects w,w0, w1 ∈U ZZq and sets h := gw and z := gw0 , yt := gw1 .
4. M2 selects I ∈U {1, . . . , `}.
5. M2 runs U

∗
3 simulating S as follows.

– For runi (i 6= I), M2 simulates with z-side witness in the same way as
shown in Step-3 of Case χ = 0 in the proof of Theorem 3.

– For runI ,
• if y = Y,M2 simulates with z-side witness as above, otherwise
• it sets z1I = Y and simulate Ps in the standard way by setting H3

conveniently. Then follow the rest of the protocol using x. Save γI
by decrypting EI .

M2 simulates H2 by returning random values, say ε1 and ε2.
6. U∗3 outputs two signatures.
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7. M2 rewinds and restarts U
∗
3 with the same setting. It selects J ∈U {1, 2}

and answers to J-th query to H2 with ε
′
J ∈U ZZq.

8. U∗3 outputs two signatures.
9. Let (ζ1, ρ,$, σ1, σ2, δ) and (ζ1, ρ

′, $′, σ′1, σ
′
2, δ

′) be the resulting signatures
that correspond to εJ and ε

′
J respectively. (If any of the resulting signatures

does not correspond to the hash value,M2 fails.) If χ = 0 and $ 6= $′,M2

outputs logg y = loggY = (ρ − ρ
′)/($′ −$) mod q. If χ = 1 and δ 6= δ′, it

outputs logg z1I = loggY = (σ1−σ
′
1)/γI(δ− δ

′) mod q.M2 fails, otherwise.

We omit the evaluation of success probability as it can be done in the same way
as shown in the proof of Theorem 3 of [1]. ut

Due to Theorem 4 and 3, the mapping between each session and valid sig-
nature is bijective with overwhelming probability. Accordingly, we have the fol-
lowing corollary.

Corollary 1. The proposed scheme is (`, ` + 1)-unforgeable for polynomially
bound ` if the discrete logarithm is intractable, all hash functions are random
oracles, and the verifiable encryption is secure and simulatable.

6 Remarks and Open Problems

– When each user uses a unique (zu, ξ, E, P ) repeatedly in all issuing sessions,
i.e. as a public-key of the user, the scheme provides blindness (and unlinka-
bility) in a weak sense. That is, signatures are computationally independent
of each other unless the signer cooperates with the attacker. Such low-level
privacy may be acceptable in applications as it offers less computation and
communication complexity instead.

– As briefly mentioned in Section 2, the security definitions and the proofs
confirm the security under the assumption that the trustee will never be
abused as an oracle. Accordingly, the trustee must not show the tracing in-
formation to anybody. To provide stronger security in blindness where the
trustee can publish the tracing information, we need the following proper-
ties. First, the verifiable encryption must be non-malleable against adaptive
chosen message attacks. It also has to provide public verifiability. Second,
the signature scheme must be unforgeable even for the signer in such a sense
that for target signature Σ produced from a session identified by ξv the
signer should not be able to produce valid signature Σ ′(6= Σ) that results
in tracing information that is relative to ξv. This property is not achieved
in our construction even if we restrict Σ ′ to be different from Σ in the part
necessary for revocation, which is ζ1 in our case. A particular attack on the
strong blindness is as follows. The signer transforms ζ1 in challenge signa-
ture Σ into ζ ′ = ζa1 with random a and creates signature Σ ′ that includes
ζ ′ by using real signing key x. Session tracing information computed from
ζ ′ will be (ξv)a and the signer can obtain target session identifier ξv. This
particular attack can be prevented but we leave a provably secure solution
for this issue an open problem.



600 Masayuki Abe and Miyako Ohkubo

– It is important to point out that, since the trustee can recover γ from E,
he can produce signature Σ′ that results in the same tracing information ξv

linked from signature Σ legitimately produced by the user. Such a threat can
be eliminated by encrypting γ with a encryption key whose decryption key is
not known to anybody. (Remember that the decryption-key is not necessary
for the trustee to complete revocation.) But for the sake of security proof, the
simulator must be able to decrypt it. This is possible, for instance, with the
verifiable encryption scheme in Appendix B. By generating encryption key
y as y = H(str) where str is a fixed public string and H is a hash function
H : {0, 1}∗ → 〈g〉. In this way, any party can be convinced that no one
knows the decryption key corresponding to y, but a simulator that simulates
the hash function as a random oracle in the proof of revocability can assign
arbitrary gx as H(str) so that x is known only to the simulator.

– Since revocation only identifies a specific randomness appearing in a issuing
session, it would be necessary to assure that the session is really done by the
user. An easy solution would be to have the transcript signed by the user.
Although the signer may flame the user by creating Σ ′ from Σ so that they
result in the same session tracing information in the similar way shown in
the second remark, one can see that it is not the user who created the second
signature due to Theorem 3.
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Appendix A

The following verifiable encryption scheme is taken from [13]. Let (n, g, h, `g) be
the public key and (p, q) be the secret key of the Okamoto-Uchiyama encryption
scheme. Here, n = p2q, and g is in ZZn that satisfies ord(g mod p2) = p(p− 1), h
= h0

n mod n for randomly chosen h0 ∈ ZZn, and `g is the bit length of the order
of g. We assume that `g > 2`q where `q is the bit length of q. Let H4 : {0, 1}

∗ →
{0, 1}`q be a hash function.
Now, γ is encrypted by Okamoto-Uchiyama encryption as E = gγhtu mod n

where tu ∈U ZZn. For C = (zu, ξ) = (z
1/γ , gγ), (C,E) ∈ R is proven by providing

P = (cu, s1u, s2u) computed by the prover as follows.

1. Choose k1 ∈U {0, 1}
εs`g and k2 ∈U {0, 1}

εs(`g+`q).
2. Compute cu = H4(zu, ξ, E, zu

k1 mod p, yt
k1 mod p, gk1hk2 mod n).

3. Compute s1 = k1 − cuγ and s2 = k2 − cutu in ZZ .

Here εs is a security parameter larger than 1. P is valid if it satisfies

cu ∈ {0, 1}
`q ,

s1u ∈ {0, 1}
εs`g , and

cu = H4(zu, ξ, E, zu
s1ugcu mod p, ytu

s2uξcu mod p, gs1uhs2uEcu mod n).

The above protocol is a statistical zero-knowledge argument for relation R.
Soundness is due to the strong RSA assumption over n. The detailed security
proof can be found in [13].

Appendix B

In this section, we require that p = 2q+1 and q = 2s+1 for prime s. (See [26] for
generating such Cunningham Chains.) Let h be a generator of a prime subgroup
in ZZq where ord(h) = s. Let (x, y) ∈ ZZs × 〈h〉 be a key pair of ElGamal
encryption defined over 〈h〉. That is, y = hx mod q.
For γ ∈ ZZq and C = (zu, ξ) = (z

1/γ , gγ), (E,P ) is computed as follows. We
first transform γ into γ? ∈ 〈h〉 by

γ? = Jq(γ) · γ mod q.
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Here, Jq(γ) is the Jacobi symbol, (
γ
q ). γ

? is then encrypted into E = (C1, C2)
using ElGamal encryption as

C1 = γ? · yω mod q,

C2 = hω mod q,

where ω ∈U ZZs. When E is decrypted into γ
? and gγ

?

mod p 6= ξ, γ is obtained
by γ = −1 · γ? mod q. Otherwise, γ = γ?.
The proof is done in two steps. In the first step, the prover proves relation

logzu
z = logg ξ by the Chaum-Pedersen protocol [10]. In the second step, we

prove in zero-knowledge manner that D(E) = Jq(logg ξ) · logg ξ mod q by re-
peating the following protocol sufficiently many times.

1. The prover selects a ∈U ZZ∗
q and b ∈U ZZs and sends

T0 = ξa mod p,

T1 = C1 · Jq(a) · a · y
b mod q, and

T2 = C2 · h
b mod q

to the verifier.
2. The verifier sends c ∈U {0, 1} to the prover.
3. The prover sends (α, β) where (α, β) = (a, b) when c = 0, and (α, β) =
(aγ mod q, b+ ω mod q) when c = 1.

4. The verifier accepts if, for c = 0,

T0 = ξα mod p,

T1 = C1 · Jq(α) · α · y
β mod q, and

T2 = C2 · h
β mod q,

and for c = 1,

T0 = gα mod p,

T1 = Jq(α) · α · y
β mod q, and

T2 = hβ mod q.

It is not hard to see that the above is correct, sound, and perfectly zero-knowledge
for any verifier. As usual, this method can be made non-interactive by executing
all repetitions in parallel and creating the challenge c by hashing all data before
the second step.


