
Oblivious Polynomial Evaluation and Oblivious

Neural Learning

Yan-Cheng Chang1 and Chi-Jen Lu2

1 ROC Airforce, Taiwan r88023@csie.ntu.edu.tw
2 Institute of Information Science, Academia Sinica, Taipei, Taiwan

cjlu@iis.sinica.edu.tw

Abstract. We study the problem of Oblivious Polynomial Evaluation
(OPE). There are two parties, Alice who has a polynomial P , and Bob
who has an input x. The goal is for Bob to compute P (x) in such way that
Alice learns nothing about x and Bob learns only what can be inferred
from P (x). Previously existing protocols are based on some intractability
assumptions that have not been well studied [15, 14], and these protocols
are only applicable for polynomials over finite fields. In this paper, we
propose efficient OPE protocols which are based on Oblivious Transfer
only. Unlike that of [15], slight modifications to our protocols immedi-
ately give protocols to handle multi-variate polynomials and polynomi-
als over floating-point numbers. Many important real-world applications
deal with floating-point numbers, instead of integers or arbitrary finite
fields, and our protocols have the advantage of operating directly on
floating-point numbers, instead of going through finite field simulation
as that of [14]. As an example, we give a protocol for the problem of
Oblivious Neural Learning, where one party has a neural network and
the other, with some training set, wants to train the neural network in
an oblivious way.

1 Introduction

Assume that there are two parties, Alice who has a function f and Bob who has
an input x. They want to collaborate in a way for Bob to compute f(x) such
that Alice learns nothing about x and Bob learns only what can be inferred from
f(x). A protocol achieving this task for any function f and any input x is called
an Oblivious Function Evaluation protocol. The remarkable results of Yao [17]
and Goldreich, Micali, and Wigderson [9] showed that such protocols exist, under
some standard cryptographic assumptions. Their protocols use a Boolean circuit
to represent the function f and then simulate the computation of this circuit in
some oblivious way. The computational or communicational overhead of their
protocols depends only linearly on the circuit size of the function f , which is the
best one can expect from a complexity-theoretical point of view. However, their
protocols are far from being practical in general, and this problem still needs
a lot of work to be done. One line of research is to study cases when different
representations of functions can lead to more efficient simulation.

372 Yan-Cheng Chang and Chi-Jen Lu

Noar and Pinkas [15] considered polynomials over finite fields. Note that any
function from m bits to m bits can be represented by a polynomial over a finite
field GF (2m), but its degree could go as high as 2m − 1. So one would like to
focus on those functions that can be represented by low degree polynomials. This
turns out to have several interesting applications [15, 8, 14, 12]. The scheme pro-
posed in [15] is much more efficient than the conventional way of going through
oblivious circuit evaluation, but its security is based on two assumptions. One as-
sumption is the existence of a secure Oblivious Transfer protocol while the other,
proposed by themselves, is the intractability of a Noisy Polynomial Interpolation
Problem. Bleichenbacher and Nguyen [3] later showed that this new assumption
may be much weaker than expected and suggested the use of a possibly stronger
intractability assumption on a Polynomial Reconstruction Problem. Still, no one
can say how hard this problem is as it is not that well-studied. Recently, Lin-
dell and Pinkas [14] mentioned a not-yet-published OPE protocol, which is also
based on some newly proposed assumption. The assumption is that the Deci-
sional Diffie-Hellman Assumption, denoted as DDH, also holds over the group
Z∗n2 , where n is the product of two large primes. Contrary to the well studied
DDH over Z∗n [2], more research may need to be done before one can have some
confidence on this new assumption. As there may be doubt on the security of
both existing OPE protocols, a more satisfactory solution is certainly welcome.

As in [15, 14], we will focus on the case with semi-honest parties, who may be
curious but still follow the protocol. The malicious case can be handled in some
standard way using commitments and zero-knowledge proofs, which will only
be briefly mentioned. We will propose three OPE protocols of different flavors.
Compared to previous ones, the security of our first two protocols is only based
on a well-accepted cryptographic assumption, namely, the existence of a secure
1-out-of-2 oblivious transfer protocol, denoted as OT2

1. For polynomials of degree
d over a finite field F, our first protocol uses d log |F| invocations of OT2

1 while
[15] needs (2kd+1) logm invocations of OT2

1 for some unspecified integers k and
mÀ d depending on their proposed assumption.1 Note that for the problem in
their assumption to be intractable, at leastmmust be very large just to prevent a
brute-force algorithm that tries every possibility. So, even with their additional
security concern, their protocol is better than ours only when |F| > m2k, i.e.
when |F| is very large. Moreover, other than carrying out OT’s, our protocol
involves only extremely simple computation. Our second protocol is less efficient
than our first one, but we include it here as the technique for achieving security
seems interesting and may have other applications. Our third protocol involves
a third party who does not collude with others but may be curious, and our
protocol is perfectly secure, without any cryptographic assumption. Unlike that
of [15], all our protocols can immediately handle multi-variate polynomials.

One attractive feature of our protocols is that they can be modified very
easily to handle floating-point numbers. This is not the case for existing OPE

1 Actually they use 2kd + 1 invocations of 1-out-of-m oblivious transfer, denoted as
OTm

1 . It is known that one OT
m
1 can be simulated by logm calls to OT2

1, together
with several evaluations of a pseudo-random function [15].

Oblivious Polynomial Evaluation and Oblivious Neural Learning 373

protocols which rely on some specific properties of finite fields. Many impor-
tant applications in real life involve numerical computation over floating-point
numbers, instead of over integers or arbitrary finite fields. There is no efficient
mapping known that embeds floating-point numbers into finite fields where arith-
metics can be carried out easily. The approach of [14] is to scale floating-point
numbers up to integers with some book-keeping, apply some OPE protocol over
integers, and then do a normalization to get back floating-point numbers. This
extra work could complicate their algorithm design and slow down the perfor-
mance a little. We show how our OPE protocols over finite fields can be easily
modified to operate directly on floating-point numbers, and we believe that such
protocols are more likely to have practical applications.
In addition to computing functions obliviously, some computational tasks

may also involve security issues and people may want to perform them in some
oblivious way. We use machine learning as an example, and demonstrate the ap-
plicability of our OPE protocol over floating-point numbers. Lindell and Pinkas
[14] considered the scenario where two parties, each holding a private database,
want to jointly construct a decision tree that classifies entries in both databases,
using a so-called ID3 algorithm. Such kind of learning is not robust to changes
in the sense that changes to a database may cause the whole process to be run
again. We use neural network as our learning model and consider the following
scenario. Alice has a neural network which is trained to some degree and she uses
it to serve the classification requests from other parties. Alice wants to keep her
neural network secret, while others want to keep their requests secret. This is
the task of oblivious neural computing. At some point, another party Bob with a
set of training examples wants to help Alice’s neural network get better, maybe
for his own good later. Alice wants to have a secure learning process so that Bob
learns nothing from her, while Bob also wants to keep his training set secret.
Later, other parties having their own training set can help Alice too, and Alice’s
neural network can adapt in an incremental way. This is the task of oblivious
neural learning. We will apply our OPE protocol over floating-point numbers,
and derive protocols for oblivious neural computing and oblivious neural learn-
ing.
The rest of the paper is organized as follows. In Section 2, we give definitions

and tools that will be used later. Three OPE protocols are proposed in Section
3. We derive OPE protocols for floating-point numbers in Section 4. In Section
5, we show oblivious protocols for neural computing and learning.

2 Preliminaries

For a positive integer n, let [n] denote the set {1, . . . , n}. For an n-dimensional
vector v, let vi, for i ∈ [n], denote the component in the i’th dimension, and we
write v = (v1, . . . , vn) = (vi)i∈[n]. Fix a security parameter τ , so that numbers
about 2−τ are considered negligible and circuits of sizes about 2τ are considered
infeasible. For a distribution D over a set S, let D(i), for i ∈ S, denote the
probability of i according to D, and define D(A), for A ⊆ S, to be

∑

i∈A D(i).

374 Yan-Cheng Chang and Chi-Jen Lu

Definition 1. Let D and D′ be two distributions over a set S. Their distance
is defined as d(D,D′) = maxA⊆S dA(D,D′), with dA(D,D′) = |D(A)−D′(A)|.

Note that d(D,D′) = 1
2

∑

i∈S |D(i)−D′(i)|, which is a useful way for calculating
d(D,D′).

Definition 2. Let D and D′ be two distributions. They are statistically indistin-

guishable, denoted as D
s≡ D′, if d(D,D′) is negligible. They are computationally

indistinguishable, denoted as D
c≡ D′, if dA(D,D′) is negligible for any subset A

decided by a circuit of feasible size.2

We will assume that parties in our protocols have only circuits of feasible sizes
for computation unless mentioned otherwise. So we will focus on computational
security, and the default distinguishability will be the computational one.
An important cryptographic primitive is the 1-out-of-2 oblivious transfer,

denoted as OT2
1. There are several variants which are all equivalent, and the one

most suited for us is the following string version of OT2
1. Let F be a set.

Definition 3. An OT2
1 protocol has two parties, Sender who has input (x0, x1) ∈

F2 and Chooser who has a choice c ∈ {0, 1}. The protocol is correct if the Chooser
learns xc for any (x0, x1) and c. The protocol is secure if both conditions below
are satisfied for any (x0, x1) and c:

– Chooser cannot distinguish the distribution of Sender’s messages from that
induced by Sender having a different value of x1−c.

– Sender cannot distinguish the distributions of Chooser’s messages induced
by c and 1− c.

Similarly one can define OTk
1 for any k ≥ 3, with Sender having k elements and

Chooser wanting to learn one. We will use OTk
1 , for k ≥ 2, to denote an assumed

correct and secure OTk
1 protocol. It is known that the existence of OT

2
1 implies

the existence of OTk
1 for any k ≥ 3 [5, 15].

Definition 4. A protocol for oblivious polynomial evaluation has two parties,
Alice who has a polynomial P over some finite field F and Bob who has an input
x∗ ∈ F. An OPE protocol is correct if Bob learns P (x∗) for any x∗ and P . It is
secure if both conditions below are satisfied for any x∗ and P :

– Alice cannot distinguish the distribution of Bob’s messages from that induced
by Bob having a different x′∗.

– Bob cannot distinguish the distribution of Alice’s messages from that induced
by Alice having a different P ′ with P ′(x∗) = P (x∗).

We say that a party in a protocol is semi-honest if the party follows the
protocol but may try to learn more information than he or she should. We only
focus on semi-honest parties in this paper. The case of malicious parties can

2 Note that for A decided by a circuit C, dA(D, D′) = |Px∈D[C(x) = 1] −
Px∈D′ [C(x) = 1]|.

Oblivious Polynomial Evaluation and Oblivious Neural Learning 375

be handled in a standard way, using commitments and zero-knowledge proofs,
which will only be briefly sketched for our first protocol.
Suppose D and D′ are two distributions depending on distributions E and

E′ respectively. For any possible outcome t of E and E ′, let (D|E = t) and
(D′|E′ = t) denote the distributions of D and D′ conditioned on E = t and

E′ = t respectively. Here is a useful lemma for showing D
c≡ D′, which will be

used several times in our security proofs later.

Lemma 1. D
c≡ D′ provided E

s≡ E′ and (D|E = t)
c≡ (D′|E′ = t) for any t.

Proof. Let C be a circuit which outputs 1 with probabilities p and p′ with respect
to D and D′. Let pt and p′t denote the corresponding probabilities with respect
to (D|E = t) and (D′|E′ = t). Let qt = E(t) and q′t = E′(t). Then

|p− p′| = |
∑

t

qtpt −
∑

t

q′tp
′
t|

≤
∑

t

|qtpt − qtp
′
t|+

∑

t

|qtp′t − q′tp
′
t|

≤
∑

t

qt|pt − p′t|+
∑

t

|qt − q′t|

So if
∑

t |qt − q′t| is negligible and each |pt − p′t| is negligible, then |p − p′| is
negligible.

Some cases later have identical E and E ′, and we only need to check each |pt−p′t|.
A family H of functions from S1 to S2 is said to satisfy a pair-wise indepen-

dent property if for any distinct α, α′ ∈ S1,

Ph∈H [h(α) = h(α′)] =
1

|S2|
.

Let (H,H(S1)) denote the distribution of (h, h(v)) with random h ∈ H and
random v ∈ S1, and let (H,S2) denote the uniform distribution over H × S2.
We will use the following lemma, which is a special case of the so-called Leftover
Hash Lemma [10, 11].

Lemma 2. Let H be any family of functions from S1 to S2 satisfying the pair-
wise independent property. Then d((H,H(S1)), (H,S2)) ≤

√

|S2|/|S1|.
A proof of this lemma is given in the appendix for completeness.

3 Oblivious Polynomial Evaluation Protocols

We will present three OPE protocols of different flavors in this section. Assume
that both parties have agreed that polynomials are over a finite field F and
have degrees at most d. The set of such polynomials can be identified with the
set T = Fd+1 in a natural way. Suppose now Alice has a polynomial P (x) =
∑d

i=0 aix
i ∈ T and Bob has x∗ ∈ F.

376 Yan-Cheng Chang and Chi-Jen Lu

3.1 The First Protocol for OPE

To make the picture clear, we only discuss the case F = GF (p) for some prime p.
The generalization to GF (pk) with k > 1 is straightforward. Let m = dlog2 |F|e.
Each coefficient ai in the polynomial can be represented as ai =

∑

j∈[m] aij2
j−1

with aij ∈ {0, 1}. For i ∈ [d] and j ∈ [m], let vij = 2
j−1xi

∗. Note that for each
i ∈ [d],

∑

j∈[m] aijvij = aix
i
∗. The idea is to have Bob prepare (vij)j∈[m] and

have Alice get those vij with aij = 1, in some secret way. This is achieved by
having Bob prepare the pair (rij , vij + rij) for a random noise rij , and having
Alice get what she wants via OT2

1. Note that what Alice obtains is aijvij + rij .
Here is our first protocol, basing only on the existence of secure OT2

1.

Protocol 1

1. Bob prepares dm pairs (rij , vij + rij)i∈[d],j∈[m], with each rij chosen ran-
domly from F.

2. For each pair (rij , vij + rij), Alice runs an independent OT
2
1 with Bob to

get rij if aij = 0 and vij + rij otherwise.
3. Alice sends to Bob the sum of a0 and those dm values she got. Bob
subtracts

∑

i,j rij from it to obtain P (x∗).

Lemma 3. Protocol 1 is correct when parties are semi-honest.

Proof. The sum Bob obtains in Step 3 is a0 +
∑

i

∑

j(aijvij + rij) = P (x∗) +
∑

i,j rij .

Lemma 4. Protocol 1 is secure when parties are semi-honest.

Proof. First, we prove Alice’s security. Suppose P and P ′ are two distinct poly-
nomials with P (x∗) = P ′(x∗) = y∗. According to Lemma 1, it suffices to show
that for any fixed (rij)i∈[d],j∈[m], Alice’s respective message distributions D and
D′ induced by P and P ′ are indistinguishable. Note that the last message from
Alice is y∗+

∑

i,j rij for both P and P ′ and can be ignored. So we focus on Alice’s
dm messages from the dm independent executions of OT’s. For 0 ≤ k ≤ dm, let
Dk denote the distribution with the first k messages from D and the remaining
messages from D′. Assume that there exists a distinguisher C for D and D′. A
standard argument shows that C can also distinguish Dk0−1 and Dk0

for some
k0. Note that Alice must select different elements from that pair in the k0’th OT,
as otherwise the two distributions are identical. Then one can break Chooser’s
security in OT2

1 when Sender has this input, because with Chooser’s messages
for different choices replacing the k0’th message of Dk0−1, we get exactly Dk0−1

and Dk0
, which can be distinguished by C. As OT2

1 is assumed to be secure, D
and D′ are indistinguishable, and Alice is secure.
Next, we prove Bob’s security. Note that Bob sends dm messages to Alice

for the dm independent executions of OT’s. Let x∗ 6= x′∗, let E and E′ be
Bob’s respective message distributions, and let Ek denote the distribution with

Oblivious Polynomial Evaluation and Oblivious Neural Learning 377

the first k messages from E and the remaining messages from E ′. Suppose a
distinguisher for E and E′ exists. Then it can also distinguish Ek0−1 and Ek0

for some k0. The pairs in that k0’th OT have the forms (r, v+r) and (r′, v′+r′),
for some fixed v and v′ and for random r and r′. Alice’s polynomial is fixed, so
which element to choose in that k0’th OT is also fixed. Suppose Alice chooses
the first one in that pair. Then according to Lemma 1, there is a fixed r0 such
that Ek0−1 conditioned on Bob having (r0, v + r0) and Ek0

conditioned on Bob
having (r0, v

′ + r0) are distinguishable. Similarly as before, one can distinguish
Sender’s messages when Sender has (r0, v+ r0) and (r0, v

′+ r0) respectively and
Chooser selects the first element, which violates Sender’s security in OT2

1. The
case when Alice chooses the second one in that pair can be argued similarly,
by noticing that the distribution (r, v + r) and the distribution (−v + r, r) are
identical. As OT2

1 is assumed to be secure, so is Bob.

Theorem 1. Protocol 1 is correct and secure when parties are semi-honest.

Note that only dm invocations of OT2
1 are required and they can be done

concurrently. Also observe that if OT2
1 can achieve perfect security for Chooser

(e.g. [1]) in the information-theoretical sense, then so is Protocol 1 for Alice.

A slight modification to Protocol 1 can handle the case of malicious parties.
The only complication is to enforce a malicious Bob to prepare dm pairs that are
consistent in the sense that there is some x∗ such that vij = 2

j−1xi
∗ for every i

and j, which can be achieved as follows. Bob sends his commitments of dm pairs
to Alice, Alice uses OT2

1 to have her dm choices decommitted, and Bob uses a
zero-knowledge proof to convince Alice that those dm pairs are consistent. All
these can be done using, for example, the methods in [13].

3.2 The Second Protocol for OPE

The idea of our second protocol is to have Alice hide the random shares of her
polynomial P among other random polynomials, have Bob evaluate all of them
on his input x∗, and then have Alice select those values corresponding to the
shares, which sum to P (x∗). Recall that T = Fd+1. Let n = log |T| + 2τ . For
P ∈ T and R = (R1, . . . , Rn) ∈ Tn, define the function hR,P : {0, 1}n → T as

hR,P (α) = P −
∑

i∈[n]

αiRi.

It’s easy to check that for any P ∈ T, the class HP = {hR,P : R ∈ Tn} satisfies
the pair-wise independent property. Here is our second OPE protocol, which is
also based on OT2

1 only.

378 Yan-Cheng Chang and Chi-Jen Lu

Protocol 2

1. Alice generates random R ∈ Tn and α ∈ {0, 1}n and sends
(R1, . . . , Rn, hR,P (α)) to Bob. Let Rn+1 = hR,P (α) and αn+1 = 1.

2. Bob generates random r ∈ Fn+1 and prepares n + 1 pairs (ri, Ri(x∗) +
ri)i∈[n+1].

3. For pair i, Alice runs an OT2
1 with Bob to get ri if αi = 0 and Ri(x∗)+ri

otherwise.
4. Alice sends the sum of the n + 1 values to Bob. Bob subtracts

∑n+1
i=1 ri

from it to get P (x∗).

Theorem 2. Protocol 2 is correct and secure when parties are semi-honest.

Proof. The correctness is obvious because the sum what Bob obtains in Step 4
is

∑n+1
i=1 αiRi(x∗) +

∑n+1
i=1 ri = P (x∗) +

∑n+1
i=1 ri. Bob’s security proof is almost

identical to that of Protocol 1, so we only prove Alice’s security here.
Fix any two polynomials P, P ′ ∈ T, let D and D′ denote Alice’s respective

message distributions, and let E and E ′ be Alice’s respective message distri-

butions in Step 1. According to Lemma 1, it suffices to show E
s≡ E′ and

(D|E = t)
c≡ (D′|E′ = t) for each t ∈ T. Using an argument similar to that in

Protocol 1, one can show (D|E = t)
c≡ (D′|E′ = t) for each t ∈ T as otherwise one

can break Chooser’s security in OT2
1. Note that the family HP satisfies the pair-

wise independent property and E is the distribution (HP , HP ({0, 1}n)). With
n = log |T|+2τ = (d+1)m+2τ , Leftover Hash Lemma [10, 11] guarantees that
the distance between E and the uniform distribution is at most

√

|T|2−n = 2−τ ,
which is negligible. Similarly E ′ also has a negligible distance to the uniform one.

So d(E,E′) is negligible and E
s≡ E′. According to Lemma 1, Alice is secure.

Note that there are (n + 1) log |T| = O(dm(dm + τ)) bits sent in Step 1,
O(dm+ τ) executions of OT2

1 in Step 3, and m bits sent in Step 4.

3.3 A Protocol for 3-Party OPE

Here we show how to remove the use of OT2
1 with the help a third party Clark.

As a result, our protocol does not rely on any cryptographic assumption and
is information-theoretically secure when no collusion exists. Again, we assume
that Alice has a polynomial P ∈ T, Bob has x∗ ∈ F and only Bob learns P (x∗).
Now the security must also hold against Clark so that the messages he receives
altogether look completely random to him; i.e.,

– Clark cannot distinguish the uniform distribution from the joint distribution
of messages he receives from Alice and Bob.

Note that our model is slightly different from that of Feige, Kilian, and Naor [7],
who have Clark as the party to receive the result. Here is the protocol.

Oblivious Polynomial Evaluation and Oblivious Neural Learning 379

Protocol 3

1. Bob sends random (ri)i∈[k] ∈ Fk to Alice. He also sends (x′i = xi
∗+ri)i∈[k]

to Clark.
2. Alice sends random (si)0≤i≤k ∈ Fk+1 to Bob. She also sends a′0 = a0 +

s0 −
∑

i∈[k] airi and (a
′
i = ai + si)i∈[k] to Clark.

3. Clark sends y = a′0+
∑

i∈[k] a
′
ix
′
i to Bob, and Bob gets P (x∗) = y− (s0+

∑

i∈[k] x
′
isi).

Theorem 3. Protocol 3 is correct and perfectly secure provided no collusion
exists,

Proof. The correctness is easy to verify. What Alice or Clark receives is com-
pletely random. Bob receives random (si)0≤i≤k in Step 2, and receives P (x∗) +
s0 +

∑

i∈[k](x
i
∗ + ri)si in Step 4, so he sees the same distribution for any poly-

nomial P ′ with P ′(x∗) = P (x∗). So each party is perfectly secure as long as no
collusion exists.

3.4 Generalizations

It is not hard to see that all the protocols in this section can be easily extended
to deal with multi-variate polynomials. In particular, we can solve an interesting
special case: Alice has a = (ai)i∈[n] ∈ Fn while Bob has x = (xi)i∈[n] ∈ Fn and
wants to learn the inner product a · x =

∑

i∈[n] aixi.
We have only considered the setting where Alice and Bob have their own

inputs and Bob gets the final result. Later we will see a variation with each
input and output shared by the two parties. We call this computing with random
shares. Let’s use the inner product function as an example. Suppose that Alice
has u, v ∈ Fn and Bob has u′, v′ ∈ Fn. They want to compute the inner product
of u + u′ and v + v′, and produce random shares, one for each party, that sum
to the inner product. This generalization can be reduced to the original problem
in the following way. Note that (u+ u′) · (v + v′) is equal to

(u · v) + (u · v′ + v · u′) + (u′ · v′).

Now Alice generates a random r ∈ F and prepares the 2(n + 1)-dimensional
vector

a = (−r + u · v, u1, . . . , un, v1, . . . , vn, 1),

while Bob prepares the 2(n+ 1)-dimensional vector

x = (1, v′1, . . . , v
′
n, u

′
1, . . . , u

′
n, u

′ · v′).

Bob can obtain a · x = −r + (u + u′) · (v + v′) using a protocol for the original
problem, and each party now holds a random share of the inner product (u+u′) ·
(v + v′). The variation for multi-variate polynomials can be handled similarly.

380 Yan-Cheng Chang and Chi-Jen Lu

4 Oblivious Polynomial Evaluation for Floating-Point

Numbers

4.1 Floating-Point Number System

We first give the definition of a floating-point number system.

Definition 5. A floating-point number is a rational number b = ±
∑2m

j=1 bj2
m−j

for some m, with bj ∈ {0, 1}. Let m̂ denote the floating-point number system
containing all such numbers together with standard arithmetic operations.

Such a floating-point number can be represented by 2m+ 1 bits: m bits for the
fractional part, m bits for the integral part, and 1 bit for the sign. Unlike finite
fields, operations in a floating-point number system are not closed and errors may
occur because of the limitation of finite precision. An underflow occurs when the
produced number needs more bits for the fractional part, and a rounding takes
place to convert it into the nearest number in the floating-point number system.
An overflow occurs when the produced number needs more bits for the integral
part, and the result is left undefined.
When we want to hide an element v of a finite field F in our previous protocols,

we generate a pair (r, r+v) with a random r ∈ F, so that any element of the pair
itself looks completely random. There is a slight complication for floating-point
numbers, but it can be easily fixed.

Lemma 5. Suppose v, v′ ∈ ˆ̀ for some ` and suppose k ≥ `+ τ + 1. The distri-
butions of v + r and v′ + r′ with random r, r′ ∈ k̂ have a negligible distance.

Proof. The distance is at most |v−v′|
2(2k−2−k)+1

≤ 2`+1

2k ≤ 2−τ .

4.2 An OPE Protocol for Floating-Point Numbers

Assume Alice holds P (x) =
∑d

i=0 aix
i, where ai ∈ m̂, and Bob holds x∗ ∈ m̂. For

each i, let |ai| =
∑2m

j=1 aij2
m−j , with aij ∈ {0, 1}. All our previous protocols can

be easily modified for floating-point numbers, and here we only demonstrate one,
which comes from Protocol 1. We will use OT3

1, which can be implemented by 2
executions of OT2

1 [15]. Let k = (d+1)m+ τ +1 and n = k+ log(2dm). Parties

agree on the floating-point system k̂ for random numbers, and the floating-point
system n̂ for all arithmetics so that no underflow or overflow will ever occur. Let
vij = 2

m−jxi
∗.

Protocol 4

1. Bob prepares 2dm 3-tuples (rij , vij + rij ,−vij+ rij)i∈[d],j∈[2m], with each

rij chosen randomly from k̂.
2. For each 3-tuple (rij , vij + rij ,−vij + rij), Alice runs an OT

3
1 with Bob

to get rij if aij = 0, vij + rij if aij = 1∧ai > 0, and −vij + rij otherwise.
3. Alice sends to Bob the sum of a0 and those 2dm values she got. Bob
subtracts

∑

i,j rij from it to obtain P (x∗).

Oblivious Polynomial Evaluation and Oblivious Neural Learning 381

Note that all the arithmetic are carried out in the system n̂, which is large
enough to guarantee that no error ever occurs. Then it’s not hard to verify the
correctness of this protocol, while its security is guaranteed by the following.

Lemma 6. Protocol 4 is secure when parties are semi-honest.

Proof. Alice’s security proof is almost identical to that of Protocol 1, so we only
discuss Bob’s security here. Let x∗, x

′
∗ ∈ m̂, let E and E′ be Bob’s respective

message distributions, and let Ek denote the distribution with the first k mes-
sages from E and the remaining messages from E ′. Suppose Ek0−1 and Ek0

can
be distinguished, for some k0, and the 3-tuples in that k0’th OT have the forms
(r, v + r,−v + r) and (r′, v′ + r′,−v′ + r′), for random r and r′ and for some

fixed v and v′. Let ` = (d+ 1)m and note that v, v′ ∈ ˆ̀ because 2m−jxi ∈ ˆ̀ for
any x ∈ m̂, i ∈ [d] and j ∈ [2m]. Then according to Lemma 5, no matter which
element Alice chooses, the two distributions of that element have a negligible
distance. Using Lemma 1 and adapting Bob’s security proof for Protocol 1, one
can show that E and E′ are indistinguishable.

Note that the generalizations discussed in Section 3.4 also hold for floating-
point numbers, and we have the following theorem.

Theorem 4. Oblivious protocols exist for the problem of multi-variate polyno-
mial evaluation (with random shares) over floating-point numbers.

5 Oblivious Neural Learning

5.1 Neural Computing and Learning

There are several variants of the neural network model. We only demonstrate our
result via 2-layer feedforward neural networks with back-propagation learning.
Other variants can be handled similarly.
A 2-layer feedforward neural network has an internal layer of J nodes, with

the j’th node having a weight vector uj = (uj1, . . . , ujI), and an output layer
of K nodes, with the k’th node having a weight vector wk = (wk1, . . . , wkJ).
Each node is associated with an activation function f(z) = a tanh(bz) (the hy-
perbolic tangent function). The network takes an input vector x = (x1, . . . , xI)
and produces an output vector o = (o1, . . . , oK) in the following way.

Neural Computing

1. Compute yj = f(uj · x), for j ∈ [J]. Let y = (y1, . . . , yJ).
2. Compute ok = f(wk · y), for k ∈ [K].

The output vector o may not be correct, and a learning algorithm adjusts
the weights according to how the vector o differs from the correct output vector
d. The pair (x, d) constitutes a training example. The back-propagation learning
(BP-Learning) algorithm adjusts the weights in the following way, with γ being
some learning constant.

382 Yan-Cheng Chang and Chi-Jen Lu

BP-Learning

1. Compute δok =
b
a
(dk − ok)(a

2 − o2
k), for k ∈ [K].

2. Compute δyj =
b
a
(a2 − y2

j)
∑K

k=1 δokwkj , for j ∈ [J].
3. Update wkj = wkj + γδokyj , for k ∈ [K], j ∈ [J].
4. Update uji = uji + γδyjxi, for i ∈ [I], j ∈ [J].

The process above can be repeated for a set of training examples.

5.2 Oblivious Neural Computing and Learning

Now we want to carry out neural computing and neural learning in an oblivious
way between two parties, Alice and Bob. Oblivious neural computing can be
defined in a way similar to oblivious polynomial evaluation, except with Alice’s
polynomial replaced by a neural network. For oblivious neural learning, Bob has
a set of training examples and wants to train Alice’s neural network so that
Bob knows nothing about Alice’s neural network while Alice knows only what
is implied by the weight changes. We need to be careful about Bob’s security, as
Alice’s neural network has IJ +JK weights and that many weight changes may
reveal a lot to Alice. So we do not let Alice know the weight changes induced
by each training example, and only let her get the overall weight changes after
the training of all examples. Now a learning protocol is secure for Bob if Alice
cannot distinguish two training sets that give the same overall weight changes.
Note in practice, neural learning typically involves large training sets.
Another scenario is for Bob to keep random shares of those final weights, as

long as he is willing to help Alice serve requests from other parties for oblivious
neural computing. Later when another party wants to continue the training
of Alice’s neural network, Bob only needs to help with his shares for the first
training example, and his duty is off after that. Contrary to the previous scenario,
Alice cannot learn anything about Bob’s training set in this way.

5.3 Oblivious Activation Function Evaluation

Here we discuss options for evaluating the activation function f(z) = a tanh(bz) =
a(1− 2

1+e2bz) in an oblivious way. We will rely on an protocol for oblivious cir-
cuit evaluation [17, 9, 16], denoted as OCE, which is efficient for small circuits.
Assume that Alice has x while Bob has y, and they want to generate random
shares of f(x + y) for Alice and Bob. One way is to use an OCE directly, if
one can accept that the circuit for f is reasonably small. For cases allowing a
large b, f(z) is close to the threshold function, which has a very simple cir-
cuit, and again we can use OCE directly. Otherwise, we will approximate f in
a piece-wise way by low degree polynomials and then apply our OPE proto-
col for it, which is described in the following. As f is smooth, there are inter-
vals I0 = (−∞, `0], I1 = (`0, `1], . . . , In = (`n−1,∞), and degree-d polynomials

Oblivious Polynomial Evaluation and Oblivious Neural Learning 383

P0, P1, . . . , Pn such that

f(z) ≈ Pi(z) for z ∈ Ii,

for some small n and d, which seem good enough for practical purposes.3 Let I
be the function such that I(z) = i for z ∈ Ii, which has a rather simple circuit
and thus an efficient OCE protocol. Let Pi,x(y) = Pi(x+y). Here is the oblivious
protocol for evaluating the activation function.

Protocol 5

1. Alice generate random r1. Bob runs OCE with Alice to get r2 = I(x +
y)− r1.

2. Alice generate random s1 and prepares the polynomial

Qx(a, y) = −s1 +
n

∑

i=0

∏

j 6=i(a+ r1 − j)
∏

j 6=i(i− j)
Pi,x(y).

Bob runs OPE with Alice for s2 = Qx(r2, y).

Note that Alice has s1 and Bob has s2 with s1 + s2 = Pi(x+ y) for x+ y ∈ Ii,
so the protocol is correct. The security proof is again similar to previous ones.

5.4 Oblivious Neural Algorithms

First we need to determine the possible range of floating-point numbers that can
ever occur during computation. Then we can determine an appropriate floating-
point number system k̂ for random numbers and a system n̂ for error-free arith-
metics. Here is the protocol for oblivious neural computing which uses the OCE
and OPE protocols with random shares.

Protocol 6

1. For j ∈ [J], Alice and Bob compute random shares sj1, sj2 of the inner
product uj · x, and then compute random shares yj1, yj2 of yj = f(sj1 +
sj2). Let y = (y1, . . . , yJ).

2. For k ∈ [K], Alice and Bob compute random shares tk1, tk2 of wk · y, and
then compute random shares ok1, ok2 of ok = f(tk1 + tk2).

At the end, Alice can send her shares ok1 to Bob for him to obtain the output
vector o. This is not needed for oblivious learning. Note that the protocol still
works when the each weight vector is shared by two parties instead of owned by
Alice, which is the case in oblivious learning.

3 For example, the error can be bounded by 2 × 10−6 with n = 9, d = 9, `0 = −7,
`8 = 7, P0 = −1, and P9 = 1.

384 Yan-Cheng Chang and Chi-Jen Lu

Theorem 5. Oblivious neural computing can be achieved by Protocol 5.

Proof. The correctness is easy to verify. The security relies on the security of
the protocol for oblivious polynomial evaluation with random shares and the
protocol for oblivious evaluation of the activation function. Any breaking of
Protocol 5’s security gives a way for breaking one of the protocols which has
been shown to be secure.

An oblivious neural learning protocol can be derived similarly. Now only the
protocol for OPE with random shares is needed.

Protocol 7

1. Alice and Bob compute random shares of each δok =
b
a
(dk−ok)(a

2−o2
k).

2. Alice and Bob compute random shares of each δyj = b
a
(a2 −

y2
j)

∑K
k=1 δokwkj .

3. Alice and Bob compute random shares of each wkj = wkj + γδokyj .
4. Alice and Bob compute random shares of each uji = uji + γδyjxi.

The learning process can be repeated for a set of training examples. At the
end of the whole process, Bob reveals his shares of those weights obtained in the
last iteration, and Alice derives the resulting neural network. The correctness is
easy to verify. The security can be proved similarly as before. Now Alice cannot
distinguish among training sets that give the same overall weight changes. So we
have the following theorem.

Theorem 6. Oblivious neural learning can be achieved by the combination of
Protocol 6 and Protocol 7.

As discussed before, an alternative scenario is not to have Bob give away his
final shares to Alice, but for him to help Alice for her future task. In this way,
Alice only obtains random shares of her new weights after each training example,
including the final one. So each training example is secure and now Alice learns
nothing about Bob’s training set.

Acknowledgements

We would like to thank Prof. Yuh-Dauh Lyuu for his help.

References

1. M. Bellare and S. Micali, Non-interactive oblivious transfer and applications, in:
Proc. CRYPTO ’89, Lecture Notes in Computer Science, Vol. 435 (Springer, 1990),
pp. 547–557.

2. D. Boneh, Decision Diffie-Hellman problem, in: Proc. Algorithmic Number Theory
1998, Lecture Notes in Computer Science, Vol. 1423 (Springer, 1998), pp. 48–63.

Oblivious Polynomial Evaluation and Oblivious Neural Learning 385

3. D. Bleichenbacher and P. Nguyen, Noisy polynomial interpolation and noisy chinese
remaindering, in: Proc. EUROCRYPT 2000, Lecture Notes in Computer Science,
Vol. 1807 (Springer, 2000), pp. 53–69.

4. G. Brassard, D. Chaum, and C. Crepeau, Minimum disclosure proofs of knowledge,
Journal of Computer and System Sciences 37(2), 1988, pp. 156–189.

5. G. Brassard, C. Crepeau, and J. M. Robert, Information theoretical reductions
among disclosure problems, in: Proc. 27th Ann. IEEE Symp. Foundations of Com-
puter Science, 1986, pp. 168–173.

6. D. Chaum, C. Crepeau, and I. Damgard, Multiparty unconditionally secure proto-
cols (extended abstract), in: Proc. 20th Ann. ACM Symp. Theory of Computing,
1988, pp. 11–19.

7. U. Feige, J. Kilian, and M. Naor, A minimal model for secure computation, in:
Proc. 26th Ann. ACM Symp. Theory of Computing, 1994, pp. 554–563.

8. Niv Gilboa, Two party RSA key generation, in: Proc. CRYPTO ’99, Lecture Notes
in Computer Science, Vol. 1666 (Springer, 1999), pp. 116–129.

9. O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game or
a completeness theorem for protocols with honest majority, in: Proc. 19th Ann.
ACM Symp. Theory of Computing, 1987, pp. 218–229.

10. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby, Construction of a pseudo-
random generator from any one-way function, SIAM Journal on Computing 28(4),
1999, pp. 1364–1396.

11. R. Impagliazzo and D. Zuckerman, How to recycle random bits, in: Proc. 30th
Ann. IEEE Symp. Foundations of Computer Science, 1989, pp. 248–253.

12. Y. Ishai and E. Kushilevitz, Randomizing polynomials: a new representation with
applications to round-efficient secure computaion, in: Proc. 41st Ann. IEEE Symp.
Foundations of Computer Science, 2000, pp. 294–304.

13. J. Kilian, Founding cryptography on oblivious transfer, in: Proc. 20th Ann. ACM
Symp. Theory of Computing, 1988, pp. 20–31.

14. Y. Lindell and B. Pinkas, Privacy preserving data mining, in: Proc. CRYPTO
2000, Lecture Notes in Computer Science, Vol. 1880 (Springer, 2000), pp. 36–54.

15. M. Naor and B. Pinkas, Oblivious transfer and polynomial evaluation, in: Proc.
31st Ann. ACM Symp. Theory of Computing, 1999, pp. 245–254.

16. T. Sander, A. Young, and M. Yung, Non-interactive cryptocomputing for NC1, in:
Proc. 40th Ann. IEEE Symp. Foundations of Computer Science, 1999, pp. 554–567.

17. A. C. Yao, How to generate and exchange secrets, in: Proc. 27th Ann. IEEE Symp.
Foundations of Computer Science, 1986, pp. 162–167.

18. J. M. Zurada, Introduction to Artificial Neural Systems, PWS Publishing, 1994.

A Proof of Lemma 2

Let ` = |H||S2|. From Cauchy-Schwartz,
∑

h,v |Pg,u[(g, g(u)) = (h, v)]− 1/`| is
at most

√
`

√

∑

h,v

(Pg,u[(g, g(u)) = (h, v)]− 1/`)2

=

√

`
∑

h,v

Pg,u[(g, g(u)) = (h, v)]2 − 2 + 1

386 Yan-Cheng Chang and Chi-Jen Lu

=
√

`Ph,h′,u,u′ [(h, h(u)) = (h′, h′(u′))]− 1

=
√

`Ph,h′ [h = h′]Ph,u,u′ [h(u) = h(u′)]− 1

≤
√

`|H|−1(Pu,u′ [u = u′] +Ph,u,u′ [h(u) = h(u′)|u 6= u′])− 1

=
√

|S2| (1/|S1|+ 1/|S2|)− 1
=

√

|S2|/|S1|.

