
Generic Attacks on Feistel Schemes

Jacques Patarin1,2

1 CP8 Crypto Lab, SchlumbergerSema, 36-38 rue de la Princesse,
BP 45, 78430 Louveciennes Cedex, France

2 PRiSM, University of Versailles, 45 av. des États-Unis,
78035 Versailles Cedex, France

Abstract. Let A be a Feistel scheme with 5 rounds from 2n bits to 2n
bits. In the present paper we show that for most such schemes A:
1. It is possible to distinguish A from a random permutation from 2n

bits to 2n bits after doing at mostO(2
7n
4) computations withO(2

7n
4)

random plaintext/ciphertext pairs.
2. It is possible to distinguish A from a random permutation from 2n

bits to 2n bits after doing at mostO(2
3n
2) computations withO(2

3n
2)

chosen plaintexts.
Since the complexities are smaller than the number 22n of possible in-
puts, they show that some generic attacks always exist on Feistel schemes
with 5 rounds. Therefore we recommend in Cryptography to use Feistel
schemes with at least 6 rounds in the design of pseudo-random permu-
tations.
We will also show in this paper that it is possible to distinguish most of
6 round Feistel permutations generator from a truly random permuta-
tion generator by using a few (i.e. O(1)) permutations of the generator
and by using a total number of O(22n) queries and a total of O(22n)
computations. This result is not really useful to attack a single 6 round
Feistel permutation, but it shows that when we have to generate several
pseudo-random permutations on a small number of bits we recommend
to use more than 6 rounds. We also show that it is also possible to ex-
tend these results to any number of rounds, however with an even larger
complexity.

Keywords: Feistel permutations, pseudo-random permutations, generic
attacks on encryption schemes, Luby-Rackoff theory.

1 Introduction

Many secret key algorithms used in cryptography are Feistel schemes (a precise
definition of a Feistel scheme is given in section 2), for example DES, TDES,
many AES candidates, etc.. In order to be as fast as possible, it is interesting to
have not too many rounds. However, for security reasons it is important to have
a sufficient number of rounds. Generally, when a Feistel scheme is designed for
cryptography, the designer either uses many (say ≥ 16 as in DES) very simple
rounds, or uses very few (for example 8 as in DFC) more complex rounds. A
natural question is: what is the minimum number of rounds required in a Feistel

Generic Attacks on Feistel Schemes 225

scheme to avoid all the “generic attacks” , i.e. all the attacks effective against
most of the schemes, and with a complexity negligible compared with a search
on all the possible inputs of the permutation.

Let assume that we have a permutation from 2n bits to 2n bits. Then a
generic attack will be an attack with a complexity negligible compared toO(22n),
since there are 22n possible inputs on 2n bits.

It is easy to see that for a Feistel scheme with only one round there is a
generic attack with only 1 query of the permutation and O(1) computations:
just check if the first half (n bits) of the output are equal to the second half of
the input.
In [4] it was shown that for a Feistel scheme with two rounds there is also
a generic attack with a complexity of O(1) chosen inputs (or O(2

n
2) random

inputs).
Also in [4], M. Luby and C. Rackoff have shown their famous result: for more
than 3 rounds all generic attacks on Feistel schemes require at least O(2

n
2)

inputs, even for chosen inputs. If we call a Luby-Rackoff construction (a.k.a. L-
R construction) a Feistel scheme instantiated with pseudo-random functions, this
result says that the Luby-Rackoff construction with 3 rounds is a pseudorandom
permutation.

Moreover for 4 rounds all the generic attacks on Feistel schemes require at
least O(2

n
2) inputs, even for a stronger attack that combines chosen inputs and

chosen outputs (see [4] and a proof in [6], that shows that the Luby-Rackoff
construction with 4 rounds is super-pseudorandom, a.k.a strong pseudorandom).
However it was discovered in [7] (and independently in [1]) that these lower
bounds on 3 and 4 rounds are tight, i.e. there exist a generic attack on all Feistel
schemes with 3 or 4 rounds with O(2

n
2) chosen inputs with O(2

n
2) computations.

For 5 rounds or more the question remained open. In [7] it was proved that

for 5 rounds (or more) the number of queries must be at least O(2
2n
3) (even with

unbounded computation complexity), and in [8] it was shown that for 6 rounds

(or more) the number of queries must be at least O(2
3n
4) (even with unbounded

computations).

It can be noticed (see [7]) that if we have access to unbounded computations,
then we can make an exhaustive search on all the possible round functions of
the Feistel scheme, and this will give an attack with only O(2n) queries (see [7])
but a gigantic complexity ≥ O(2n2n). This “exhaustive search” attack always
exists, but since the complexity is far much larger than the exhaustive search
on plaintexts in O(22n), it was still an open problem to know if generic attacks,
with a complexity ¿ O(22n), exist on 5 rounds (or more) of Feistel schemes.

In this paper we will indeed show that there exist generic attacks on 5 rounds
of the Feistel scheme, with a complexity ¿ O(22n). We describe two attacks on
5 round Feistel schemes:

1. An attack with O(2
7n
4) computations on O(2

7n
4) random input/output

pairs.

2. An attack with O(2
3n
2) computations on O(2

3n
2) chosen inputs.

226 Jacques Patarin

For 6 rounds (or more) the problem remains open. In this paper we will describe
some attacks on 6 rounds (or more) with a complexity much smaller thanO(2n2n)
of exhaustive search, but still ≥ O(22n). So these attacks on 6 rounds and more
are generally not interesting against a single permutation. However they may be
useful when several permutations are used, i.e. they will be able to distinguish
some permutation generators. These attacks show for example that when several
small permutations must be generated (for example in the Graph Isomorphism
scheme, or as in the Permuted Kernel scheme) then we must not use a 6 round
Feistel construction.

Remark The generic attacks presented here for 3, 4 and 5 rounds are effective
against most Feistel schemes, or when the round functions are randomly cho-
sen. However it can occur that for specific choices of the round function, the
attacks, performed exactly as described, may fail. However in this case, very
often there are modified attacks on these specific round functions. This point
will be discussed in section 6.

2 Notations

We use the following notations that are very similar to those used in [4], [5] and
[8].

– In = {0, 1}
n is the set of the 2n binary strings of length n.

– For a, b ∈ In, [a, b] will be the string of length 2n of I2n which is the con-
catenation of a and b.

– For a, b ∈ In, a⊕ b stands for bit by bit exclusive or of a and b.
– ◦ is the composition of functions.
– The set of all functions from In to In is Fn. Thus |Fn| = 2

n·2n .
– The set of all permutations from In to In is Bn. Thus Bn ⊂ Fn, and |Bn| =
(2n)!

– Let f1 be a function of Fn. Let L, R, S and T be elements of In. Then by
definition

Ψ(f1)[L,R] = [S, T]
def⇔

S = R
and
T = L⊕ f1(R)

– Let f1, f2, . . . , fk be k functions of Fn. Then by definition:

Ψk(f1, . . . , fk) = Ψ(fk) ◦ · · · ◦ Ψ(f2) ◦ Ψ(f1).

The permutation Ψk(f1, . . . , fk) is called “a Feistel scheme with k rounds”
and also called Ψk.

3 Generic attacks on 1,2,3 and 4 rounds

Up till now, generic attacks had been discovered for Feistel schemes with 1,2,3,4
rounds. Let us shortly describe these attacks.
Let f be a permutation of B2n. For a value [Li, Ri] ∈ I2n we will denote by
[Si, Ti] = f [Li, Ri].

Generic Attacks on Feistel Schemes 227

1 round
The attack just tests if S1 = R1. If f is a Feistel scheme with 1 round, this will
happen with 100% probability, and if f is a random permutation with probability
' 1

2n . So with one round there is a generic attack with only 1 random query and
O(1) computations.

2 rounds
Let choose R2 = R1 and L2 6= L1. Then the attack just tests if S1⊕S2 = L1⊕L2.
This will occur with 100% probability if f is a Feistel scheme with 2 rounds, and
if f is a random permutation with probability ' 1

2n . So with two rounds there
is a generic attack with only 2 chosen queries and O(1) computations.

Note 1: It is possible to transform this chosen plaintext attack in a known
plaintext attack like the following. If we have O(2

n
2) random inputs [Li, Ri],

then with a good probability we will have a collision Ri = Rj , i 6= j. Then we
test if Si ⊕ Sj = Li ⊕ Lj . Now the attack requires O(2

n
2) random queries and

O(2
n
2) computations.

Note 2: This attack on 1 and 2 rounds was already described in [4].

3 rounds
Let φ be the following algorithm :
1. φ chooses m distinct Ri, 1 ≤ i ≤ m, and chooses Li = 0 (or Li constant) for
all i, 1 ≤ i ≤ m.

2. φ asks for the values [Si, Ti] = f [Li, Ri], 1 ≤ i ≤ m.
3. φ counts the number N of equalities of the form Ri ⊕ Si = Rj ⊕ Sj , i < j.
4. Let N0 be the expected value of N when f is a random permutation, and N1

be the expected value of N when f is a ψ3(f1, f2, f3), with randomly chosen
f1, f2, f3.
Then N1 ' 2N0, because when f is a ψ

3(f1, f2, f3), Ri ⊕ Si = f2(f1(Ri))
so f2(f1(Ri)) = f2(f1(Rj)), i < j, if f1(Ri) 6= f1(Rj) and f2(f1(Ri)) =
f2(f1(Rj)) or if f1(Ri) = f1(Rj).

So by counting N we will obtain a way to distinguish 3 round Feistel permu-
tations from random permutations. This generic attack requires O(2

n
2) chosen

queries and O(2
n
2) computations (just store the values Ri ⊕ Si and count the

collisions).

Remark Here N1 ' 2 · N0 when f1, f2, f3 are randomly chosen. Therefore this
attack is effective on most of 3 round Feistel schemes but not necessarily on all
3 round Feistel schemes. (See section 6 for more comments on this point).

4 rounds
This time, we take Ri = 0 (or Ri constant), and we count the number N of
equalities of the form Si⊕Li = Sj⊕Lj , i < j. In fact, when f = ψ4(f1, f2, f3, f4),
then Si⊕Li = f3(f2(Li⊕f1(0)))⊕f1(0). So the probability of such an equality is
about the double in this case (as long as f1, f2, f3 are randomly chosen) than in

228 Jacques Patarin

the case where f is a random permutation (because if f2(Li ⊕ f1(0)) = f2(Lj ⊕
f1(0)) this equality holds, and if βi = f2(Li ⊕ f1(0)) 6= f2(Lj ⊕ f1(0)) = βj but
f3(βi) = f3(βj), this equality also holds).
So by counting N we will obtain a way to distinguish 4 round Feistel permu-

tations from random permutations. This generic attack requires O(2
n
2) chosen

queries and O(2
n
2) computations (just store the values Si ⊕ Li and count the

collisions).

Notes:

1. These attacks for 3 and 4 rounds have been first published in [7], and inde-
pendently re-discovered in [1].

2. Here again the attack is effective against most of 4 round Feistel schemes
but not necessarily on all 4 round Feistel schemes. (See section 6 for more
comments on this point).

4 A generic attack on 5 round Feistel permutations with
O(2

7n

4) random plaintexts and O(2
7n

4) complexity

4.1 Notations for 5 round Feistel permutations

Let i be an integer. For any given i, let [Li, Ri] be a string of 2n bits in I2n. Let

Ψ5[Li, Ri] = [Si, Ti].
We introduce the intermediate variables Xi, Pi and Yi such that:

Xi = Li ⊕ f1(Ri)
Pi = Ri ⊕ f2(Xi)
Yi = Xi ⊕ f3(Pi)

So we have: Si = Pi ⊕ f4(Yi) and Ti = Yi ⊕ f5(Si). In other terms we have
the following:

Ψ(f1)[Li, Ri] = [Ri, Xi], as Xi = Li ⊕ f1(Ri)
Ψ(f2)[Ri, Xi] = [Xi, Pi], as Pi = Ri ⊕ f2(Xi)
Ψ(f3)[Xi, Pi] = [Pi, Yi], as Yi = Xi ⊕ f3(Pi)
Ψ(f4)[Pi, Yi] = [Yi, Si], as Si = Pi ⊕ f4(Yi)
Ψ(f5)[Yi, Si] = [Si, Ti], as Ti = Yi ⊕ f5(Si)

Input: L R

1 round: R X

2 rounds: X P

3 rounds: P Y

4 rounds: Y S

Output, 5 rounds: S T

Figure 1.

Generic Attacks on Feistel Schemes 229

We may notice that the following conditions (C) are always satisfied:

(C)

Ri = Rj ⇒ Xi ⊕ Li = Xj ⊕ Lj (CR)
Xi = Xj ⇒ Ri ⊕ Pi = Rj ⊕ Pj (CX)
Pi = Pj ⇒ Xi ⊕ Yi = Xj ⊕ Yj (CP)
Yi = Yj ⇒ Si ⊕ Pi = Sj ⊕ Pj (CY)
Si = Sj ⇒ Yi ⊕ Ti = Yj ⊕ Tj (CS)

4.2 The attack

Let f be a permutation from B2n We want to know (with a good probability)
if f is a random element of B2n, or if f is a Feistel scheme with 5 rounds (i.e.
f = Φ5(f1, f2, f3, f4, f5) with f1, f2, f3, f4, f5 being 5 functions of Fn).
The attack proceeds as follows:

Step 1: We generate m values [Si, Ti] = f [Li, Ri], 1 ≤ i ≤ m such that the

[Li, Ri] values are randomly chosen in I2n and with m = O(2
7n
4).

Step 2: We look if among these values, we can find 4 pairwise distinct indices
denoted by 1, 2, 3, 4 such that the following 8 equations (and 2 inequalities) are
satisfied:

(#)

R1 = R3

R2 = R4

L1 ⊕ L3 = L2 ⊕ L4

S1 = S3

S2 = S4

S1 ⊕ S2 = R1 ⊕R2

T1 ⊕ T3 = L1 ⊕ L3

T1 ⊕ T3 = T2 ⊕ T4

(and with R1 6= R2 and L1 6= L3)

-

? ?

3 4

1 2 S ⊕R

R,S, L⊕ T R, S, L⊕ T

and L1 ⊕ L2 ⊕ L3 ⊕ L4 = 0

Figure 2: A representation of the 8 equations # in L, S,R, T .

Below we explain how one can test with the complexity of O(m) if such
indices exist.

230 Jacques Patarin

Step 3: If such indices exist, we will guess that f is Feistel scheme with 5 rounds.
If not we will say that f is not a Feistel scheme. [We will see below that the
probability to find such indices is not negligible if f is a Feistel scheme with 5
rounds and M ≥ O(2

7n
4) for most of 5 round Feistel schemes].

4.3 How to accomplish the step 2 in O(m) computations

First, we find among the m × m possibilities, all the possible indices 1 and 3
such that:

{
R1 = R3

S1 = S3

L1 ⊕ T1 = L3 ⊕ T3

It is possible to this in O(m) computations instead of O(m2) by storing all
them values (Ri, Si, Li⊕Ti) in a hash table and looking for collisions. We expect

to find m2

23n ¿ m such indices (as m¿ 23n).
In the same way we find all the possible indices 2 and 4 such that:

{
R2 = R4

S2 = S4

L2 ⊕ T2 = L4 ⊕ T4

Each part requires O(m) computations and O(m) of memory, and, if needed,
there is a tradeoff with O(m · α) computations and O(m/α) memory.
Now we store all the values (L1 ⊕ L3, S1 ⊕ R1) for all the indices (1, 3)

already found. There are about m2

23n ≤ m such values. Then we store all the
values (L2 ⊕ L4, S2 ⊕R2) for all the indices (2, 4) already found. Using another
birthday paradox technique, we look for the following collision:

{
L2 ⊕ L4 = L1 ⊕ L3

S2 ⊕R2 = S1 ⊕R1

The complexity and the storage is O(m
2

23n) ≤ O(m) again. At the end we have
at most m choices of pairwise distinct indices (1, 2, 3, 4). Among these we keep
those that give R1 6= R2 and L1 6= L3. By inspection we check that now they
satisfy all the equations of (#).

4.4 Probability of (#) when f is a random permutation of B2n

When f is a random permutation of B2n, we haveO(m
4) possibilities to chose the

indices 1, 2, 3, 4 among them possible indices, and we have 8 equations to satisfy,
with a probability about 1

28n to have them all true for some pairwise distinct
1, 2, 3, 4. By inspection we check that the equations of (#) are not dependent.
Thus the probability to have 4 pairwise distinct indices 1, 2, 3, 4 that satisfy (#)

is about m4

28n when f is a random permutation of B2n (n.b. the two additional
inequalities R1 6= R2 and L1 6= L3 change nothing). Since m ¿ 22n (because

m = O(2
7n
4)) this probability is negligible.

Generic Attacks on Feistel Schemes 231

4.5 Probability of (#) when f is a Feistel scheme with 5 rounds

Theorem 1 When f is a Feistel scheme with 5 rounds, the 8 equations of (#)
are a logical consequence on the following 7 equations:

(Λ)

R1 = R3 (1)
R2 = R4 (2)
L1 ⊕ L3 = L2 ⊕ L4 (3)
S1 = S3 (4)
X1 = X2 (5)
P1 = P3 (6)
Y1 = Y2 (7)

Proof of Theorem 1.
We will use the facts (CR), (CX), (CP), (CY) and (CS) that have been intro-
duced in section 4.1.

– From (1) and (CR) we get
X3 = X1 ⊕ L1 ⊕ L3 (8)

– From (2) and (CR) we get X4 ⊕ L4 = X2 ⊕ L2, and then using (8), (5) and
(3) we get
X4 = X3 (9).

– From (5) and (CX) we get:
R1 ⊕ P1 = R2 ⊕ P2 (10)

– From (9) and (CX) we get R4 ⊕ P4 = R3 ⊕ P3 and then from (10), (6), (1)
and (2) we get:
P4 = P2 (11)

– From (6) and (CP) we get X1 ⊕ Y1 = X3 ⊕ Y3 and then from (8) we get:
Y3 = Y1 ⊕ L1 ⊕ L3 (12)

– From (11) and (CP) we get X2⊕ Y2 = X4⊕ Y4 and then from (12), (7), (9),
(5) and (8) we get:
Y4 = Y3 (13)

– From (7) and (CY) we get S1 ⊕ P1 = S2 ⊕ P2 and then from (10) we get:
S1 ⊕ S2 = R1 ⊕R2 (14)

– From (13) and (CY) we get S4⊕P4 = S3⊕P3 and then from (14), (4), (11),
(6) and (10) we get:
S4 = S2 (15)

– From (4) and (CS) we get Y1 ⊕ T1 = Y3 ⊕ T3 and then from (12) we get:
T3 = T1 ⊕ L1 ⊕ L3 (16).

– From (15) and (CS) we get Y4 ⊕ T4 = Y2 ⊕ T2 and then from (13), (7), (12)
and (16) we get:
T4 ⊕ T2 = T1 ⊕ T3 (17)

– If R1 = R2 then because of (5) we have L1 = L2 and R1 = R2 ⇒ 1 = 2 and
the indices 1 and 2 are distinct by definition. Thus
R1 6= R2 (18)

– Finally since 1 6= 3 and because of (1) we have. L1 6= L3 (19)

232 Jacques Patarin

So all the equations of (#) are indeed just consequences of the 7 equations
(Λ) when f is a Feistel with 5 rounds. Indeed the 8 + 2 conditions of (#) are
now in (1), (2), (3), (4), (15), (14), (16), (17), and finally (18) and (19).

Theorem 2 Let f be a Feistel scheme with 5 rounds, f = Ψ 5(f1, f2, f3, f4, f5).
Then for most of such f , the probability to have 4 pairwise distinct indices 1,2,3,4

that satisfy # is ≥ O(m
4

27n), and thus is not negligible when m ≥ O(2
7n
4). There-

fore the algorithm given in the section 4 is indeed a generic way to distinguish
most Feistel schemes with 5 rounds from a truly random permutation of B2n

with a complexity of O(2
7n
4).

Proof.
When f1, f2, f3, f4, f5 are randomly chosen in Fn, the probability that there
exist pairwise distinct indices 1,2,3,4 chosen out of a set of m indices such that

all the 7 equations (Λ) hold is = O(m
4

27n). Thus from the Theorem 1 we get the
Theorem 2.

Remark Here again, the attack is effective against most of 5 round Feistel
schemes, but not necessarily on all 5 round Feistel schemes. (See section 6 for
more comments on that).

5 A generic attack on 5 round Feistel permutations with
O(2

3n

2) chosen plaintexts and O(2
3n

2) complexity

This attack proceeds exactly as the previous attack of the Section 4, except that
now Step 1 is replaced by the following Step’ 1:

Step’ 1 We generate m values f [Li, Ri] = [Si, Ti], 1 ≤ i ≤ m such that the Li
values are randomly chosen in In and the Ri values are randomly chosen in a
subset I ′

n of In with only 2
n
2 elements. For example I ′

n=all the strings of n bits
with the first n/2 bits at 0.

Let m = O(2
3n
2).

5.1 Probability of (#) when f is a random permutation of B2n

Now the probability that there are some indices 1, 2, 3, 4 such that equations (#)
are satisfied when f is randomly chosen in B2n is about

m4

2
n
2 · 2

n
2 26n

=
m4

27n

(because the equations R1 = R3 and R2 = R4 have now a probability
1

2
n
2
to

be satisfied instead of 1
2n).

However, since here m = O(2
3n
2), this probability m4

27n is still negligible.

Generic Attacks on Feistel Schemes 233

5.2 Probability of (#) when f is a Feistel scheme with 5 rounds

When f is a Feistel scheme with 5 rounds, with f1, f2, f3, f4, f5 randomly chosen
in Fn, the probability that there exist indices 1, 2, 3, 4 chosen out of a set of m
indices, such that all the 7 equations (Λ) are satisfied is about

'
m4

2
n
2 · 2

n
2 25n

=
m4

26n

(because the equations R1 = R3 and R2 = R4 have now a probability
1

2
n
2
to

be satisfied instead of 1
2n).

So from Theorem 1 of section 4, we see that for these functions f the prob-
ability that there exist indices 1,2,3,4 such that all the 8 equations (and 2 in-

equalities) # are satisfied is here generally ≥ O(m
4

26n).
Thus the algorithm given in this section 5 is indeed a generic way to distin-

guish most Feistel schemes with 5 rounds from a truly random permutation of
B2n, with a complexity O(2

3n
2) and O(2

3n
2) chosen queries.

Remark Here again some time/memory tradeoff is possible: use O(2
3n
2) chosen

queries, O(2
3n
2 · α) computations and O(2

3n
2 /α) of memory.

6 Feistel schemes with specific round functions

The problem. The generic attacks that we have presented for 3, 4 and 5 rounds
are effective against most Feistel schemes, or when the round functions are ran-
domly chosen. However it can occur that for specific choices of the round func-
tions, these attacks, if applied exactly as described, may fail. In this cases, very
often there are some other attacks, against these specific rounds functions, that
are even simpler. We will illustrate this on an example pointed out by an anony-
mous referee of Asiacrypt’2001.

Theorem 3 (Knudsen, see [2] or [3]) Let [L1, R1] and [L2, R2] be two inputs
of a 5 round Feistel scheme, and let [S1, T1] and [S2, T2] be the outputs. Let
assume that the round functions f2 and f3 are permutations (therefore they are
not random functions of Fn). Then if R1 = R2 and L1 6= L2 it is impossible to
have simultaneously S1 = S2 and L1 ⊕ L2 = T1 ⊕ T2.

Proof.
R1 = R2 ⇒ X1 ⊕X2 = L1 ⊕ L2, and S1 = S2 ⇒ Y1 ⊕ Y2 = T1 ⊕ T2. Therefore
if we have L1 ⊕ L2 = T1 ⊕ T2, we will have also:

X1 ⊕ Y1 = X2 ⊕ Y2.

Now since we have Yi = Xi ⊕ f3(Pi), we will have f3(P1) = f3(P2) and since f3
is a permutation we get P1 = P2.
Then since we have Pi = Ri ⊕ f2[Li ⊕ f1(Ri)] with R1 = R2, and since f2 is a
permutation we get

L1 ⊕ f1(R1) = L2 ⊕ f1(R2).

This is in contradiction with R1 = R2 and L1 6= L2.

234 Jacques Patarin

Attacks on 5 round Feistel schemes with f2 and f3 permutations

From the above Theorem 3 we see that our attack given in section 4 and 5
against most 5 round Feistel schemes will fail when f2 and f3 are permutations.
Indeed, the event R1 = R3, L1 6= L3, S1 = S3 and L1 ⊕ L3 = T1 ⊕ T3 will never
occur if f2 and f3 are permutations. However, in such a case there is an even
simpler attack that comes immediately from the Theorem 3: we can randomly
get m input/output values and count the number of indices (i, j), i < j such
that:

Ri = Rj

Si = Sj
Li ⊕ Lj = Ti ⊕ Tj

For a random permutation this number is O(m
2

23n), and for a 5 round Feistel
scheme with f2 and f3 being permutations, it is exactly 0.
This attack requires O(2

3n
2) random plaintext/ciphertext pairs and O(2

3n
2) com-

putations.

Remark: This attack can also be extended to 6 round Feistel schemes when
the round functions are permutations (or “quasi-permutations”), see [2, 3] for
details.

Conclusion It was known (before the present paper) that some generic attacks on
5 round Feistel schemes exist when the round functions are permutations. This
particular case is interesting since two of the former AES candidates, namely
DFC and DEAL, were such Feistel schemes using permutations as round func-
tions. (More precisely they were “quasi-permutations” in DFC). The number of
rounds in these functions is however ≥ 6.
In this paper we have shown a more general result that such generic attacks
exist for most of 5 round Feistel schemes (even when f2 and f3 are not per-
mutations). It can be noticed that our attack is based on specific relations on 4
points (corresponding to 4 ciphertexts), while the previous attacks were based
on specific relations on only 2 points (”impossible differentials”).

7 Attacking Feistel Generators

In this section we will describe what is an attack against a generator of per-
mutations (and not only against a single permutation randomly generated by a
generator of permutations), i.e. we will be able to study several permutations
generated by the generator. Then we will evaluate the complexity of brute force
attacks and we will notice that since all Feistel permutations have an even sig-
nature, it is possible to distinguish them from a random permutation in O(22n).
Let G be a “k round Feistel Generator”, i.e. from a binary string K, G gen-

erates a k round Feistel permutation GK of B2n.
Let G′ be a truly random permutation generator, i.e. from a string K, G′ gen-
erates a truly random permutation G′

K of B2n.

Generic Attacks on Feistel Schemes 235

Let G′′ be a truly random even permutation generator, i.e. from a string K, G′′

generates a truly random permutation G′′
K of A2n, with A2n being the group of

all the permutations of B2n with even signature.
We are looking for attacks that distinguish G from G′, and also for attacks

that will distinguish G from G′′.

Adversarial model: An attacker can choose some strings K1, . . . Kf , can ask for
some inputs [Li, Ri] ∈ I2n, and can ask for some GKα [Li, Ri] (with Kα being
one of the Ki). Here the attack is more general than in the previous sections,
since the attacker can have access to many different permutations generated by
the same generator.

Adversarial goal: The aim of the attacker is to distinguish G from G′ (or from
G′′) with a good probability and with a complexity as small as possible.

Brute force attacks A possible attack is the exhaustive search on the k round
functions f1, . . . , fk form In to In that have been used in the Feistel construction.
This attack always exists, but since we have 2k·n·2n possibilities for f1, . . . , fk,
this attack requires about 2k·n·2n computations (or 2d k

2
e·n·2n computations in a

version “in the middle” of the attack) and about k · 2n−1 random queries1 and
only 1 permutation of the generator.

Attack by the signature

Theorem 4 If n ≥ 2 then all the Feistel schemes from I2n → I2n have an even
signature.

Proof.
Let σ : I2n → I2n

[L,R] 7→ [R,L].
Let f1 be a function of Fn.
Let Ψ ′(f1)[L,R] = [L⊕ f1(R), R].
We will show that both σ and Ψ ′(f1) have an even signature, so will have σ ◦
Ψ ′(f1) = Ψ(f1), and thus by composition, all the Feistel schemes from I2n → I2n
have an even signature.

For σ: All the cycles have 1 or 2 elements, and we have 2n cycles with 1 element

(and an even signature), and 22n−2n

2 cycles with 2 elements. When n ≥ 2 this
number is even.

For Ψ ′(f1): All the cycles have 1 or 2 elements since Ψ
′(f1) ◦ Ψ

′(f1) = Id.
Moreover the number of cycles with 2 elements is 2n·k

2 , with k being the number
of values R such that f1(R) 6= 0. So when n ≥ 2 the signature of Ψ

′(f1) is even.

Theorem 5 Let f be a permutation of B2n. Then using O(22n) computations
on the 22n input/output values of f , we can compute the signature of f .

1 each query divides by about 22n the number of possible f1, . . . , fk

236 Jacques Patarin

Proof.

Just compute all the cycles ci of f , f =
α∏

i=1

ci and use the formula:

signature(f) =
α∏

i=1

(−1)length(ci)+1.

Theorem 6 Let G be a Feistel scheme generator, then it is possible to distin-
guish G from a generator of truly random permutations of B2n after O(22n)
computations on O(22n) input/output values.

Proof.
It is direct consequence of the Theorems 4 and 5 above.

Remark.
It is however probably much more difficult to distinguish G from random per-
mutations of A2n, with A2n being the group of all the permutations of B2n with
even signature. In the next sections we will present our best attacks for this
problem.

8 An attack on 6 round Feistel Generators in O(22n)

Attacks on 6 round Feistel If G is a generator of 6 round Feistel permutations
of B2n, we have found an attack (described below) that uses a few (i.e. O(1))
permutations from the generator G, O(22n) computations and about O(22n)
random queries. So this attack has a complexity much smaller than the exhaus-
tive search in 263n·2n . However since a permutation of B2n has only 2

2n possible
inputs, this attack has no real interest against a single specific 6 round Feistel
scheme used in encryption.
It is interesting only if a few 6 round Feistel schemes are used. This can be par-

ticularly interesting for some cryptographic schemes using many permutations
on a relatively small number of bits. For example in the Graph Isomorphism
authentication scheme many permutations on about 214 points are used (thus
n = 7), or in the Permuted Kernel Problem PKP of Adi Shamir many permu-
tations on about 26 points (n = 3 here). Then, we will be able to distinguish
these permutations from truly random permutations with a small complexity if
a 6 round Feistel scheme generator is used. And this, whatever the size of the
secret key used in the generator may be. So we do not recommend to generate
small pseudorandom permutations from 6 round Feistel schemes.

The Attack:
Let [Li, Ri] be an element of I2n.
Let Ψ6[Li, Ri] = [Si, Ti]. The attack proceeds as follows:

Step 1.
We choose specific permutation f = GK .
We generate m values f [Li, Ri] = [Si, Ti], 1 ≤ i ≤ m with the random [Li, Ri] ∈
I2n and with m = O(2

2n).

Generic Attacks on Feistel Schemes 237

Remark: Since m = O(22n), we cover here almost all the possible inputs
[Li, Ri] for this specific permutation f .

Step 2.
We look if among these values we can find 4 pairwise distinct indices denoted
by 1, 2, 3, 4 such that these 8 equations are satisfied:

(#)

R1 = R3

R2 = R4

S1 = S2

S3 = S4

L1 ⊕ L3 = L2 ⊕ L4

L1 ⊕ L3 = S1 ⊕ S3

T1 ⊕ T2 = T3 ⊕ T4

T1 ⊕ T2 = R1 ⊕R2

(and with R2 6= R1, S3 6= S1 and T1 6= T2).

-

-

? ?

3 4

1 2 S,R⊕ T

S,R⊕ T

R,L⊕ S R,L⊕ S

Figure 3: A representation of the 8 equations # in L, S,R, T .

It is also possible to show that all the indices that satisfy these equations can
be found in O(m) and with O(m) of memory. We count the number of solutions
found.

Step 3.
We try again at Step 1 with another f = GK′ and we will do this a few times,
say λ times with λ = O(1). Let α be the total number of solutions found at Step
2 for all the λ functions tested. It is possible to prove that for a generator of
pseudorandom permutation of B2n we have

α '
λm4

28n
.

Moreover it is possible to prove that for a generator of 6 round Feistel schemes
the average value we get for α is

α ≥ about
2λm4

28n
.

238 Jacques Patarin

Proof.
The proof is very similar to the proof we did for Ψ 5 (due to the lack of space
we do not explicit it here).

So by counting this value α we will distinguish 6 round Feistel generators from

truly random permutation generators each time when λm4

28n is not negligible, for
example when λ = O(1) and m = O(22n), as claimed.

Examples: Thus we are able, to distinguish between a few 6 round Feistel per-
mutations taken from a generator, and a set of truly random permutations (or
from a set of random permutations with an even signature) from 32 bits to 32,
within approximately 232 computations and 232 chosen plaintexts.

9 An attack on k round Feistel Generators

It is also possible to extend these attacks on more than 6 rounds, to any number
of rounds k. However for more than 6 rounds, as already for 6 rounds, all our
attacks require a complexity and a number of queries ≥ O(22n), so they can
be interesting to attack generators of permutations, but not to attack a single
permutation (the probability of success against one single permutation is gener-
ally negligible, and we need a few, or many permutations from the generator, in
order to be able to distinguish the generator from a truly random permutation
generator).

Example of attack on a Feistel generator with k rounds. Let k be an integer.
For simplicity we will assume that k is even (the proof is very similar when k is
odd). Let λ = k

2 −1. Let G be a generator of Feistel permutations of k rounds of
B2n. We will consider an attack with a set of equations in (L,R, S, T) illustrated
in figure 3. For simplicity we do not write all the equations explicitly.

-

-

-

-

S, R⊕ T

S, R⊕ T

S, R⊕ T

S, R⊕ T

...

?

R, L⊕ S ?

R, L⊕ S . . .
?

R, L⊕ S

λ points
︷ ︸︸ ︷

λ points

Figure 4: Modelling the 4 · λ(λ− 1) equations in L,R, S, T .

Generic Attacks on Feistel Schemes 239

Here we have µ = λ2 = (k2 −1)
2 indices, and we have 4λ(λ−1) = k2−6k+8

equations in L,R, S, T . Here it is possible to prove that the probability that the
4λ(λ − 1) equations of figure 3 exist, will be about twice for a Feistel scheme
with k rounds, than for a truly random permutation.
Thus, on a fixed permutation this attack succeeds with a probability in

O

(

m(k
2

−1)2

2n·4λ(λ−1)

)

If we take m = O(22n) for such a permutation, it gives a probability of
success in

O

(

22n(k
2

−1)2

2n·(k2−6k+8)

)

So we will use O(2n(k
2

2
−4k+6)) permutations, and the total complexity and

the total number of queries on all these permutations will be O(2n(k
2

2
−4k+8)).

The total memory will be O(22n).

Examples:

– With k = 6 this attack uses O(1) permutations and O(22n) computations
(exactly as we did in section 8).

– With k = 8 we need O(26n) permutations and O(28n) computations.

10 Conclusion

Up till now, generic attacks on Feistel schemes were known only for 1,2,3 or
4 rounds. In this paper we have seen that some generic attacks also do exist
on 5 round Feistel schemes. So we do not recommend to use 5 round Feistel
schemes in cryptography for general purposes. Our first attack requires O(2

7n
4)

random plaintext/ciphertext pairs and the same amount of computation time.

Our second attack requires O(2
3n
2) chosen plaintext/ciphertext pairs and the

same amount of computation time. For example, it is possible to distinguish most
of 5 round Feistel ciphers with blocks of 64 bits, from a random permutation
from 64 bits to 64 bits, within about 248 chosen queries and 248 computations.
We have also seen that when we have to generate several small pseudo-

random permutations we do not recommend to use a Feistel scheme generator
with only 6 rounds (whatever the length of the secret key may be). As an exam-
ple, it is possible to distinguish most generators of 6 round Feistel permutations
from truly random permutations on 32 bits, within approximately 232 computa-
tions and 232 chosen plaintexts (and this whatever the length of the secret key
may be).
Similar attacks can be generalised for any number of rounds k, but they require
to analyse much more permutations and they have a larger complexity when k
increases.

240 Jacques Patarin

11 Acknowledgments

I would like to thank Jean-Jacques Quisquater who allowed me to do this work,
as it has been done during my invited stay at the university of Louvain-La-Neuve.
I also would like to thank the anonymous referee of Asiacrypt’2001, for pointing
out the references [2, 3], and for observing that my attack against 5 round Feistel
schemes will not in general apply as it is, against some specific round functions
such as permutations. Finally I would like to thank Nicolas Courtois for his help
writing this paper.

References

1. William Aiollo, Ramarathnam Venkatesan: Foiling Birthday Attacks in Length-
Doubling Transformations - Benes: A Non-Reversible Alternative to Feistel. Eu-
rocrypt 96, LLNCS 1070, Springer-Verlag, pp. 307-320.

2. L.R. Knudsen: DEAL - A 128-bit Block Cipher, Technical report #151, Uni-
versity of Bergen, Department of Informatics, Norway, February 1998. Sub-
mitted as a candidate for the Advanced Encryption Standard. Available at
http://www.ii.uib.no/∼larsr/newblock.html

3. L.R. Knudsen, V. Rijmen: On the Decorrelated Fast Cipher (DFC) and its Theory.
Fast Software Encryption (FSE’99), Sixth International Workshop, Rome, Italy,
March 1999, LNCS 1636, pp. 81-94, Springer, 1999.

4. M. Luby, C. Rackoff, How to construct pseudorandom permutations from pseudo-
random functions, SIAM Journal on Computing, vol. 17, n. 2, pp. 373-386, April
1988.

5. Moni Naor and Omer Reingold, On the construction of pseudo-random permuta-
tions: Luby-Rackoff revisited, J. of Cryptology, vol 12, 1999, pp. 29-66. Extended
abstract in: Proc. 29th Ann. ACM Symp. on Theory of Computing, 1997, pp. 189-
199.

6. J. Patarin, Pseudorandom Permutations based on the DES Scheme, Eurocode’90,
LNCS 514, Springer-Verlag, pp. 193-204.

7. J. Patarin, New results on pseudorandom permutation generators based on the DES
scheme, Crypto’91, Springer-Verlag, pp. 301-312.

8. J. Patarin About Feistel Schemes with Six (or More) Rounds, in Fast Software En-
cryption 1998, pp. 103-121.

