RUB

Decoding Random Binary Linear Codes in $2^{n / 20}$

 How 1+1=0 Improves Information Set DecodingA. Becker, A. Joux, A. May, A. Meurer EUROCRYPT 2012, Cambridge

The Representation Technique [HGJ10]

How to find a needle \mathbf{N} in a haystack H ...

- Expand H into larger stack H'
- Expanding H' introduces r many representations N_{1}, \ldots, N_{r}
- Examine a $1 / r$ - fraction of H^{\prime} to find one N_{i}

The Representation Technique [HGJ10]

How to find a needle \mathbf{N} in a haystack H...

- Expand H into larger stack H'
- Expanding H' introduces r many representations N_{1}, \ldots, N_{r}
- Examine a $1 / r$ - fraction of H^{\prime} to find one N_{i}

Technicality: Find a way to examine a $1 / r$ - fraction of H^{\prime} without completely
constructing it beforehand

The Representation Technique [HGJ10]

How to find a needle \mathbf{N} in a haystack H ...

- Expand H into larger stack H'
- Expanding H' introduces r many representations N_{1}, \ldots, N_{r}
- Examine a $1 / r$ - fraction of H^{\prime} to find one N_{i}
Has been used in [MMT11] to improve Information Set Decoding

The Representation Technique

Optimizing the Representation Technique [BCJ11]

- $r=$ number of needles
- $\left|\mathrm{H}^{\prime}\right|=$ size of expanded haystack
- Ratio |H'| / r determines efficiency
\rightarrow Increase r while keeping $\left|\mathrm{H}^{\prime}\right|$ small

The Representation Technique

Optimizing the Representation Technique [BCJ11]

- $r=$ number of needles
- $\left|\mathrm{H}^{\prime}\right|=$ size of expanded haystack
- Ratio |H'| / r determines efficiency
\rightarrow Increase r while keeping IH'| small

$$
\text { Can we use } 1+1=0 \text { to increase } r ?
$$

Recap Binary Linear Codes

- $C=$ random binary [$n, k, d]$ code
- $\mathrm{n}=$ length $/ \mathrm{k}=$ dimension $/ \mathrm{d}=$ minimum distance

Bounded Distance Decoding (BDD)

- Given $\mathbf{x}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in \mathrm{C}$ and $w:=w t(e)=\left\lfloor\frac{d-1}{2}\right\rfloor$
- Find \mathbf{e} and thus $\mathbf{c}=\mathbf{x + e}$

Comparing Running Times

How to compare performance of decoding algorithms

- Running time $\mathrm{T}(\mathrm{n}, \mathrm{k}, \mathrm{d})$
- Fixed code rate $R=k / n$
- For $n \rightarrow \infty, k$ and d are related via Gilbert-Varshamov bound, thus

$$
T(n, k, d)=T(n, k)
$$

- Compare algorithms by complexity coefficient $F(k)$, i.e.

$$
T(n, k)=2^{F(k) \cdot n+o(n)}
$$

Comparing Running Times

How to compare performanc

- Running time $\mathrm{T}(\mathrm{n}, \mathrm{k}, \mathrm{d})$

Minimize $\mathrm{F}(\mathrm{k})$!

- Fixed code rate $R=k / n$
- For $n \rightarrow \infty, k$ and d are related vi bound, thus

$$
T(n, k, d)=T
$$

- Compare algorithms by comp kity coefficient $F(k)$, i.e.

$$
T(n, k)=2^{F(k) \cdot n+o(n)}
$$

Syndrome Decoding

(BDD) Given $\mathbf{x}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in \mathrm{C}$ and $\mathrm{wt}(\mathbf{e})=\mathrm{w}$, find \mathbf{e} !

- $\mathbf{H}=$ parity check matrix
- Consider syndrome s:= s(x)=H•X=H•(c+e)=H:e
\rightarrow Find linear combination of w columns of \mathbf{H} matching \mathbf{s}

Syndrome Decoding

(BDD) Given $\mathbf{x}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in \mathrm{C}$ and $\mathrm{wt}(\mathbf{e})=\mathrm{w}$, find \mathbf{e} !

- $\mathbf{H}=$ parity check matrix
- Consider syndrome $\mathbf{s}:=\mathrm{s}(\mathbf{x})=\mathbf{H} \cdot \mathbf{x}=\mathbf{H} \cdot(\mathbf{c}+\mathbf{e})=\mathbf{H} \cdot \mathbf{e}$
\rightarrow Find linear combination of w columns of \mathbf{H} matching \mathbf{s}

Brute-Force complexity

$$
\mathrm{T}(\mathrm{n}, \mathrm{k}, \mathrm{~d})=\binom{n}{w}
$$

Syndrome Decoding

(BDD) Given $\mathbf{x}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in \mathrm{C}$ and $w t(\mathbf{e})=\mathrm{w}$, find \mathbf{e} !

- $\mathbf{H}=$ parity check matrix
- Consider syndrome s:= $\mathbf{s}(\mathbf{x})=\mathbf{H} \cdot \mathbf{x}=\mathbf{H} \cdot(\mathbf{c}+\mathbf{e})=\mathbf{H} \cdot \mathbf{e}$
\rightarrow Find linear combination of w columns of \mathbf{H} matching \mathbf{s}
$F(k) \leq 0.3868$

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem
- Elementary row operations on \mathbf{H} do not change the problem

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem
- Elementary row operations on \mathbf{H} do not change the problem

Some Basic Observations for BDD

Allowed (linear algebra) transformations

- Permuting the columns of \mathbf{H} does not change the problem
- Elementary row operations on \mathbf{H} do not change the problem

Randomized quasi-systematic form

- Work on randomly column-permuted version of \mathbf{H}
- Transform \mathbf{H} into quasi-systematic form

First used in generalized ISD framework of [FSO9]

Information Set Decoding

"Reducing the brute-force search space by linear algebra."

The ISD Principle

- Structure of \mathbf{H} allows to divide $\mathbf{e}=$| $k+l$ | $n-k-l$ |
| :--- | :--- |
| \mathbf{e}_{1} | \mathbf{e}_{2} |

The ISD Principle

- Structure of \mathbf{H} allows to divide $\mathbf{e}=$| \mathbf{e}_{1} | \mathbf{e}_{2} |
| :--- | :--- |

The ISD Principle

- Structure of \mathbf{H} allows to divide $\mathbf{e}=$| \mathbf{e}_{1} | \mathbf{e}_{2} |
| :--- | :--- |

The ISD Principle

- Structure of \mathbf{H} allows to divide $\mathbf{e}=$| \mathbf{e}_{1} | \mathbf{e}_{2} |
| :--- | :--- |

The ISD Principle

Find all \mathbf{e}_{1} of weight p matching \mathbf{s} on first l coordinates

The ISD Principle

Find all \mathbf{e}_{1} of weight p matching \mathbf{s} on first l coordinates

- Method only recovers particular error patterns

- If we fail to find \mathbf{e}_{1} :
\rightarrow Rerandomize \mathbf{H}

The ISD Principle

We exploit $1+1=0$ to find e_{1} more efficiently!

A Meet-in-the-Middle Approach

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Disjoint partition $I=I_{1} \dot{\cup} I_{2}$ into left and right half

A Meet-in-the-Middle Approach

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- To find $I=I_{1} \dot{\cup} I_{2}$ run a Meet-in-the-Middle algorithm based on $\sum_{i \in I_{1}} q_{i}=\sum_{j \in I_{2}} q_{j}+s$
- Haystack $=$ set of all $\frac{(k+1) / 2}{\frac{(k+1 / 2}{0} / 2}$
- Needle = unique $\frac{(k+1 / 2 / 2)^{(k+1 / 2} 0}{0}$
- Same F(k) as recent Ball-Collision decoding [BLP11] as shown in [MMT11]

A Meet-in-the-Middle Approach

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- To find $I=I_{1} \dot{\cup} I_{2}$ run a Meet-in-the-Middle algorithm based on $\sum_{i \in I_{1}} q_{i}=\sum_{j \in I_{2}} q_{j}+s$

$F(k) \leq 0.0556$
- Needle = unique $\frac{(k++1 / 2)}{\left[\frac{(k+1) / 2}{0} / 2 / 2\right.}$
- Same F(k) as recent Ball-Collision decoding [BLP11] as shown in [MMT11]

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

... and so on ...

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Haystack = set of all \square
- Needles $=\binom{p}{p / 2}$ representations

- Bottleneck: Efficient computation of a
$\frac{1}{\binom{p}{p / 2}}$ - fraction of the haystack

Using Representations [MMT11]

Find a selection $I \subset[1, \ldots, k+l],|I|=p$ with $\sum_{i \in I} q_{i}=\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{l}\end{array}\right)$

- Haystack = set of all \square
- Needles $=\binom{p}{p / 2}$ representations

- Bottleneck: Efficient computation of a
$\frac{1}{\binom{p}{p / 2}}$ - fraction of the haystack
$F(k) \leq 0.0537$

Using $1+1=0$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

$I_{1} \square \mathrm{p} / 2+\epsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

$I_{1} \square \mathrm{p} / 2+\epsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

k+l

... and so on ...

p/2+

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

k+l

How to use $1+1=0$

Write $I=I_{1} \Delta I_{2}:=\left(I_{1} \cup I_{2}\right) \backslash\left(I_{1} \cap I_{2}\right)$ as the symmetric difference of intersecting sets $\left|I_{1} \cap I_{2}\right|=\varepsilon$

- Haystack = set of all $\square_{\mathrm{p} / 2+\epsilon}^{k+1}$
 How can we compute a $1 / R$ - fraction of the haystack?

How to use $1+1=0$

How can we compute a $1 / R$ - fraction of the haystack ?

- Want to find one needle I_{1} (and suitable I_{2}) with

$$
\begin{gathered}
\sum_{i \in I_{1}} q_{i}=\sum_{j \in I_{2}} q_{j}+s \\
\mathbf{q}_{1}+\mathbf{q}_{3}+\mathbf{q}_{4}+\mathbf{q}_{11}=\mathbf{q}_{2}+\mathbf{q}_{4}+\mathbf{q}_{7}+\mathbf{q}_{12}+\mathbf{s}
\end{gathered}
$$

How to use $1+1=0$

How can we compute a $1 / R$ - fraction of the haystack?

How to use $1+1=0$

How can we compute a $1 / R$ - fraction of the haystack?

Uniform 0/1- pe needle I_{1} (and suitable I_{2}) with coordinates

$$
\sum_{i \in I_{1}} q_{i}=\sum_{j \in I_{2}} q_{j}+s
$$

$\left.q_{1}+q_{3}+q_{4}+q_{11}=q_{2}+q_{4}+q_{7}+q_{12}+{ }_{s}\right\} \log (R)$ coordinates

- Fix $\sum_{i \in I_{1}} q_{i}$ to $\mathbf{0}$ and $\sum_{j \in I_{2}} q_{j}$ to \mathbf{s} on $\log (\mathrm{R})$ coordinates
\rightarrow Expect one needle to fulfill the extra constraint!

Some More Details

The actual search for the needle

- à la Wagner's Generalized Birthday Algorithm
- Three-layered binary computation tree

Some technicalities

- Need to exclude "badly distributed" $\mathbf{q}_{1}, \ldots, \mathbf{q}_{\mathrm{k}+1}$
- Method introduces extra inverse-polynomial failure probability

Main Result $F(k) \leq 0.04934<1 / 20$

Wrapping up...

Summary

- Using 1+1=0 introduces extra representations
- Asymptotically fastest generic decoding algorithm
- Full Version ePrint 2012/026

Open Questions

- More representations? Over \mathbb{F}_{q} ?
- (Low level) optimizations

Wrapping up...

Summary

- Using 1+1=0 introduces extra representations
- Asymptotically fastest generic decoding algorithm
- Full Version ePrint 2012/026

Open Questions
Thank you!

- More representations? Over \mathbb{F}_{q} ?
- (Low level) optimizations

