RUB

Decoding Random Binary Linear Codes in 2^{n/20} How 1+1=0 Improves Information Set Decoding

A. Becker, A. Joux, A. May, <u>A. Meurer</u> EUROCRYPT 2012, Cambridge

The Representation Technique [HGJ10]

How to find a needle N in a haystack H...

- Expand H into larger stack H'
- Expanding H' introduces r many representations N₁, ..., N_r
- Examine a 1/r fraction of H' to find one N_i

How to find a needle N in a haystack H...

- Expand H into larger stack H'
- Expanding H' introduces r many representations N₁, ..., N_r
- Examine a 1/r fraction of H' to find one N_i

Technicality: Find a way to examine a 1/r – fraction of H' without completely constructing it beforehand

How to find a needle N in a haystack H...

- Expand H into larger stack H'
- Expanding H' introduces r many representations N₁, ..., N_r

Technicality: Find a way to examine a 1/r – fraction of H' without completely constructing it beforehand

RUB

 Examine a 1/r – fraction of H' to find one N_i

Has been used in [MMT11] to improve Information Set Decoding

The Representation Technique

Optimizing the Representation Technique [BCJ11]

- r = number of needles
- |H'| = size of expanded haystack
- Ratio |H'| / r determines efficiency
- → Increase r while keeping |H'| small

The Representation Technique

Optimizing the Representation Technique [BCJ11]

- r = number of needles
- |H'| = size of expanded haystack
- Ratio |H'| / r determines efficiency
- → Increase r while keeping |H'| small

Can we use 1+1 = 0 to increase r?

Recap Binary Linear Codes

- C = random binary [n,k,d] code
- n = length / k = dimension / d = minimum distance

Bounded Distance Decoding (BDD)

- Given $\mathbf{x} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in \mathbf{C}$ and $\mathbf{w} := \operatorname{wt}(\mathbf{e}) = \left\lfloor \frac{d-1}{2} \right\rfloor$
- Find **e** and thus **c** = **x**+**e**

Comparing Running Times

How to compare performance of decoding algorithms

- Running time T(n,k,d)
- Fixed code rate R = k/n
- For n→∞, k and d are related via Gilbert-Varshamov bound, thus

T(n,k,d) = T(n,k)

• Compare algorithms by complexity coefficient F(k), i.e.

$$T(n,k) = 2^{F(k) \cdot n + o(n)}$$

Comparing Running Times

(BDD) Given $\mathbf{x} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in \mathbf{C}$ and wt(\mathbf{e})=w, find \mathbf{e} !

- **H** = parity check matrix
- Consider syndrome s := $s(x) = H \cdot x = H \cdot (c+e) = H \cdot e$
- \rightarrow Find linear combination of w columns of **H** matching **s**

(BDD) Given $\mathbf{x} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in \mathbf{C}$ and wt(\mathbf{e})=w, find \mathbf{e} !

- **H** = parity check matrix
- Consider syndrome s := $s(x) = H \cdot x = H \cdot (c+e) = H \cdot e$
- \rightarrow Find linear combination of w columns of **H** matching **s**

Brute-Force complexity
$$T(n,k,d) = \binom{n}{w}$$

(BDD) Given $\mathbf{x} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in \mathbf{C}$ and wt(\mathbf{e})=w, find \mathbf{e} !

- **H** = parity check matrix
- Consider syndrome s := $s(x) = H \cdot x = H \cdot (c+e) = H \cdot e$
- \rightarrow Find linear combination of w columns of **H** matching **s**

Permuting the columns of H does not change the problem

• Permuting the columns of **H** does not change the problem

• Permuting the columns of **H** does not change the problem

• Permuting the columns of **H** does not change the problem

RUB

• Elementary row operations on **H** do not change the problem

- Permuting the columns of **H** does not change the problem
- Elementary row operations on **H** do not change the problem

• Permuting the columns of **H** does not change the problem

RUB

• Elementary row operations on **H** do not change the problem

Randomized quasi-systematic form

- Work on randomly column-permuted version of ${\bf H}$
- Transform **H** into quasi-systematic form

RUB

First used in generalized ISD framework of [FS09]

Information Set Decoding

"Reducing the brute-force search space by linear algebra."

• Structure of **H** allows to divide $\mathbf{e} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$

• Structure of **H** allows to divide $\mathbf{e} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$

• Structure of **H** allows to divide $\mathbf{e} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$

• Structure of **H** allows to divide $\mathbf{e} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$

Find all \mathbf{e}_1 of weight p matching s on first l coordinates

We exploit 1+1=0 to find e_1 more efficiently!

A Meet-in-the-Middle Approach

Find a selection
$$I \subset [1, \ldots, k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

RUB

• Disjoint partition $I = I_1 \dot{\cup} I_2$ into left and right half

A Meet-in-the-Middle Approach

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

RUB

 $\langle S_1 \rangle$

• To find $I = I_1 \dot{\cup} I_2$ run a Meet-in-the-Middle algorithm

based on
$$\sum_{i \in I_1} q_i = \sum_{j \in I_2} q_j + s$$

- Haystack = set of all p/2 (k+l)/2 (k+l)/2
- Needle = unique p/2 0
- Same F(k) as recent Ball-Collision decoding [BLP11] as shown in [MMT11]

A Meet-in-the-Middle Approach

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} \cdot I \\ \vdots \\ s_l \end{pmatrix}$

RUB

 (s_1)

• To find $I = I_1 \dot{\cup} I_2$ run a Meet-in-the-Middle algorithm

based on
$$\sum_{i \in I_1} q_i = \sum_{j \in I_2} q_j + s$$

• Haystack = set of all $p/2$ 0
• Needle = unique $p/2$ 0
• Needle = unique $p/2$ 0

• Same F(k) as recent Ball-Collision decoding [BLP11] as shown in [MMT11]

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, ..., k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Find a selection
$$I \subset [1, \dots, k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Basic representation technique
- Arbitrary disjoint partition

Using Representations [MMT11]

Find a selection
$$I \subset [1, \ldots, k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

RUB

- Haystack = set of all p/2
- Needles = $\binom{p}{p/2}$ representations $\frac{k+l}{p/2}$,

• Bottleneck: Efficient computation of a $\frac{1}{\binom{p}{p/2}}$ - fraction of the haystack

Using Representations [MMT11]

Find a selection
$$I \subset [1, \ldots, k+l], |I| = p$$
 with $\sum_{i \in I} q_i = \begin{pmatrix} s_1 \\ \vdots \\ s_l \end{pmatrix}$

- Haystack = set of all p/2
- Needles = $\binom{p}{p/2}$ representations $\frac{k+l}{p/2}$,

Bottleneck: Efficient computation of a

 $\frac{1}{\binom{p}{p/2}}$ - fraction of the haystack

Using 1 + 1 = 0

RUB

RUB

Write
$$I = I_1 \Delta I_2 := (I_1 \cup I_2) \setminus (I_1 \cap I_2)$$
 as the symmetric difference of intersecting sets $|I_1 \cap I_2| = \varepsilon$

• Haystack = set of all $p/2 + \epsilon$

• Needles =
$$\binom{p}{p/2}\binom{k+l-p}{\varepsilon}$$
 representations
=:R

How can we compute a 1/R – fraction of the haystack ?

How can we compute a 1/R – fraction of the haystack ?

• Want to find *one* needle I_1 (and suitable I_2) with

$$\sum_{i \in I_1} q_i = \sum_{j \in I_2} q_j + s$$
$$\mathbf{q}_1 + \mathbf{q}_3 + \mathbf{q}_4 + \mathbf{q}_{11} = \mathbf{q}_2 + \mathbf{q}_4 + \mathbf{q}_7 + \mathbf{q}_{12} + \mathbf{s}$$

How can we compute a 1/R – fraction of the haystack ?

How can we compute a 1/R – fraction of the haystack ?

RUB

- Fix $\sum_{i \in I_1} q_i$ to **0** and $\sum_{j \in I_2} q_j$ to **s** on log(R) coordinates
- → Expect one needle to fulfill the extra constraint!

The actual search for the needle

- à la Wagner's Generalized Birthday Algorithm
- Three-layered binary computation tree

Some technicalities

- Need to exclude "badly distributed" \mathbf{q}_1 , ..., \mathbf{q}_{k+1}
- Method introduces extra inverse-polynomial failure probability

Main Result $F(k) \le 0.04934 < 1/20$

RUB

Wrapping up...

Summary

- Using 1+1=0 introduces extra representations
- Asymptotically fastest generic decoding algorithm
- Full Version ePrint 2012/026

Open Questions

- More representations? Over \mathbb{F}_{q} ?
- (Low level) optimizations

Wrapping up...

Summary

- Using 1+1=0 introduces extra representations
- Asymptotically fastest generic decoding algorithm
- Full Version ePrint 2012/026
 Thank you!
 Open Questions
- More representations? Over \mathbb{F}_{q} ?
- (Low level) optimizations