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Abstract. Four round Feistel permutation (like DES) is super-pseudo-
random if each round function is random or a secret universal hash func-
tion. A similar result is known for five round MISTY type permutation.
It seems that each round function must be at least either random or
secret in both cases.
In this paper, however, we show that the second round permutation g in
five round MISTY type permutation need not be cryptographic at all,
i.e., no randomness nor secrecy is required. g has only to satisfy that
g(x) ⊕ x 6= g(x′) ⊕ x′ for any x 6= x′. This is the first example such
that a non-cryptographic primitive is substituted to construct the mini-
mum round super-pseudorandom permutation. Further we show efficient
constructions of super-pseudorandom permutations by using above men-
tioned g.

Keywords: Block cipher, pseudorandomness, MISTY type permuta-
tion.

1 Introduction

1.1 Super-pseudorandomness

A secure block cipher should be indistinguishable from a truly random permuta-
tion. Consider an infinitely powerful distinguisher D which tries to distinguish a
block cipher from a truly random permutation. It outputs 0 or 1 after making at
most m queries to the given encryption and/or decryption oracles. We say that
a distinguisher D is a pseudorandom distinguisher if it has oracle access to the
encryption oracle. We also say that a distinguisher D is a super-pseudorandom
distinguisher if it has oracle access to both the encryption oracle and the decryp-
tion oracle. Then a block cipher E is called pseudorandom if any pseudorandom
distinguisher D cannot distinguish E from a truly random permutation. A block
cipher E is called super-pseudorandom if any super-pseudorandom distinguisher
D cannot distinguish E from a truly random permutation.
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1.2 Previous works

The super-pseudorandomness of Feistel permutation (like DES) has been studied
extensively so far. Let φ(f1, f2, f3) denote the three round Feistel permutation
such that the i-th round function is fi. Similarly, let φ(f1, f2, f3, f4) denote the
four round Feistel permutation.
Suppose that each fi is a random function. Then Luby and Rackoff proved

that φ(f1, f2, f3) is pseudorandom and φ(f1, f2, f3, f4) is super-pseudorandom
[4]. Lucks showed that the φ(h1, f2, f3) is pseudorandom even if h1 is an ε-
XOR universal hash function [5]. Suppose that h1 and h4 are uniform ε-XOR
universal hash functions. Then Naor and Reingold proved that h4 ◦φ(f2, f3)◦h1

is super-pseudorandom [8], and Ramzan and Reyzin showed that φ(h1, f2, f3, h4)
is super-pseudorandom even if the distinguisher has oracle access to f2 and f3
[9].
On the other hand, let ψ(p1, p2, p3, p4, p5) denote the five round MISTY type

permutation such that the i-th round permutation is pi. Suppose that each pi
is a random permutation. Then Iwata et al. [3] and Gilbert and Minier [2] in-
dependently showed that ψ(p1, p2, p3, p4, p5) is super-pseudorandom. More than
that, let hi be a uniform ε-XOR universal permutation. Iwata et al. proved that

1. ψ(h1, h2, p3, p4, h
−1
5 ) is super-pseudorandom even if the distinguisher has or-

acle access to p3, p
−1
3 , p4 and p

−1
4 .

2. ψ(h1, p2, p3, p4, h
−1
5 ) is super-pseudorandom even if the distinguisher has or-

acle access to p2, p
−1
2 , p3, p

−1
3 , p4 and p

−1
4 .

1.3 Our contribution

Four round Feistel permutation (like DES) is super-pseudorandom if each round
function is random or a secret universal hash function. A similar result is known
for five round MISTY type permutation. It seems that each round function must
be at least either random or secret in both cases.
In this paper, however, we show that the second round permutation g in

five round MISTY type permutation need not be cryptographic at all, i.e., no
randomness nor secrecy is required. g has only to satisfy that g(x)⊕x 6= g(x′)⊕
x′ for any x 6= x′. This is the first example such that a non-cryptographic
primitive is substituted to construct the minimum round super-pseudorandom
permutation. Further we show efficient constructions of super-pseudorandom
permutations by using above mentioned g.
One might wonder if five rounds can be reduced to four rounds to obtain

super-pseudorandomness of MISTY. However, it is not true because Sakurai and
Zheng showed that the four round MISTY type permutation ψ(p1, p2, p3, p4) is
not super-pseudorandom [10].
More precisely, we prove that five round MISTY is super-pseudorandom if it

is ψ(h1, g, p, p
−1, h−1

5 ), where g is the above mentioned permutation, h1 is an ε-
XOR universal permutation, h5 is a uniform ε-XOR universal permutation, and
p is a random permutation. Further, suppose that both h1 and h5 are uniform
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ε-XOR universal permutations. Then we prove that it is super-pseudorandom
even if the distinguisher has oracle access to p and p−1.
More than that, we study the case such that the third and the fourth round

permutations are both p. In this case, we show that it is not super-pseudorandom
nor pseudorandom if a distinguisher has oracle access to p. More formally, we
show that for any fixed and public g, ψ(p1, g, p, p, p5) is not pseudorandom if a
distinguisher has oracle access to p.

2 Preliminaries

2.1 Notation

For a bit string x ∈ {0, 1}2n, we denote the first (left) n bits of x by xL and

the last (right) n bits of x by xR. If S is a probability space, then s
R
← S

denotes the process of picking an element from S according to the underlying
probability distribution. The underlying distribution is assumed to be uniform
(unless otherwise specified).
Denote by Fn the set of all functions from {0, 1}

n to {0, 1}n, which consists
of 2n·2

n

functions in total. Similarly, denote by Pn the set of all permutations
from {0, 1}n to {0, 1}n, which consists of (2n)! permutations in total.

2.2 MISTY type permutation [6, 7]

Definition 2.1 (The basic MISTY type permutation). Let x ∈ {0, 1}2n.
For any permutation p ∈ Pn, define the basic MISTY type permutation ψp ∈ P2n

as ψp(x)
def
= (xR, p(xL) ⊕ xR). Note that it is a permutation since ψ−1

p (x) =
(p−1(xL ⊕ xR), xL).

Definition 2.2 (The r round MISTY type permutation, ψ). Let r ≥ 1
be an integer, p1, . . . , pr ∈ Pn be permutations. Define the r round MISTY type

permutation ψ(p1, . . . , pr) ∈ P2n as ψ(p1, . . . , pr)
def
= ρ ◦ ψpr

◦ · · · ◦ ψp1 , where
ρ(xL, xR) = (xR, xL) for x ∈ {0, 1}

2n.

See Fig. 1 (the five round MISTY type permutation) for an illustration. Note
that pi in Fig. 1 is a permutation. For simplicity, the left and right swaps are
omitted.

2.3 Uniform ε-XOR universal permutation

Our definitions follow from those given in [1, 3, 9, 11].

Definition 2.3. Let Hn be a permutation family over {0, 1}n. Denote by #Hn

the size of Hn.
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Fig. 1. MISTY type permutation

1. Hn is a uniform permutation family if for any element x ∈ {0, 1}n and any

element y ∈ {0, 1}n, there exist exactly #Hn

2n permutations h ∈ Hn such that

h(x) = y.

2. Hn is an ε-XOR universal permutation family if for any two distinct ele-

ments x, x′ ∈ {0, 1}n and any element y ∈ {0, 1}n, there exist at most ε#Hn

permutations h ∈ Hn such that h(x)⊕ h(x′) = y.

Let fa(x)
def
= a · x over GF(2n), where a 6= 0. Then {fa(x)} is a

1
2n−1 -XOR

universal permutation family.

Let fa,b(x)
def
= a ·x+b over GF(2n), where a 6= 0. Then {fa,b(x)} is a uniform

1
2n−1 -XOR universal permutation family.

We will use the phrase “h is an ε-XOR universal permutation” to mean that
“h is drawn uniformly from an ε-XOR universal permutation family”. Similarly,
we will use the phrase “h is a uniform ε-XOR universal permutation”.

3 Improved super-pseudorandomness of MISTY type

permutation

We say that a permutation g over {0, 1}n is XOR-distinct if

g(x)⊕ x 6= g(x′)⊕ x′
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for any x 6= x′. Let g(x) = a · x over GF(2n), where a 6= 0, 1. Then this g is
clearly XOR-distinct.
In this section, we prove that ψ(h1, g, p, p

−1, h−1
5 ) is super-pseudorandom

even if the second round permutation g is fixed and publicly known. g has only
to be XOR-distinct. This means that the five round MISTY type permutation is
super-pseudorandom even if the second round permutation has no randomness
nor secrecy.
Let H0

n be an ε-XOR universal permutation family over {0, 1}
n, and H1

n be
a uniform ε-XOR universal permutation family over {0, 1}n. Define

{

MISTY01
2n

def
= {ψ(h1, g, p, p

−1, h−1
5 ) | p ∈ Pn, h1 ∈ H

0
n, h5 ∈ H

1
n}

MISTY11
2n

def
= {ψ(h1, g, p, p

−1, h−1
5 ) | p ∈ Pn, h1, h5 ∈ H

1
n}

3.1 Super-pseudorandomness of MISTY01

2n

Let D be a super-pseudorandom distinguisher for MISTY01
2n which makes at most

m queries in total. We consider two experiments, experiment 0 and experiment 1.
In experiment 0, D has oracle access to ψ and ψ−1, where ψ is randomly chosen
from MISTY01

2n. In experiment 1, D has oracle access to R and R
−1, where R is

randomly chosen from P2n.
Define the advantage of D as follows.

Adv(D)
def
= |pψ − pR|

where
{

pψ
def
= Pr(Dψ,ψ

−1

(12n) = 1 | ψ
R
← MISTY01

2n)

pR
def
= Pr(DR,R

−1

(12n) = 1 | R
R
← P2n)

Lemma 3.1. Fix x(i) ∈ {0, 1}2n and y(i) ∈ {0, 1}2n for 1 ≤ i ≤ m arbitrarily

in such a way that {x(i)}1≤i≤m are all distinct and {y(i)}1≤i≤m are all distinct.

Then the number of ψ ∈ MISTY01
2n such that

ψ(x(i)) = y(i) for 1 ≤ ∀i ≤ m (1)

is at least

(#H0
n)(#H

1
n)(2

n − 2m)!

(

1− 2ε ·m(m− 1)−
2m2

2n

)

.

A proof is given in Appendix A.

Theorem 3.1. For any super-pseudorandom distinguisher D that makes at most

m queries in total,

Adv(D) ≤ 2ε ·m(m− 1) +
2m2

2n
.
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Proof. Let O = R or ψ. The super-pseudorandom distinguisher D has oracle
access to O and O−1.
There are two types of queries D can make: either (+, x) which denotes the

query “what is O(x)?”, or (−, y) which denotes the query “what is O−1(y)?” For
the i-th query D makes to O or O−1, define the query-answer pair (x(i), y(i)) ∈
{0, 1}2n × {0, 1}2n, where either D’s query was (+, x(i)) and the answer it got
was y(i) or D’s query was (−, y(i)) and the answer it got was x(i). Define view v

of D as v = ((x(1), y(1)), . . . , (x(m), y(m))).
Without loss of generality, we assume that {x(i)}1≤i≤m are all distinct, and

{y(i)}1≤i≤m are all distinct.
Since D has unbounded computational power, D can be assumed to be de-

terministic. Therefore, the final output of D (0 or 1) depends only on v. Hence
denote by CD(v) the final output of D.

Let vone
def
= {v | CD(v) = 1} and None

def
= #vone.

Evaluation of pR. From the definition of pR, we have

pR = Pr
R
(DR,R

−1

(12n) = 1)

=
#{R | DR,R

−1

(12n) = 1}

(22n)!
.

For each v ∈ vone, the number of R such that

R(x(i)) = y(i) for 1 ≤ ∀i ≤ m (2)

is exactly (22n −m)!. Therefore, we have

pR =
∑

v∈vone

#{R | R satisfying (2)}

(22n)!

= None ·
(22n −m)!

(22n)!
.

Evaluation of pψ. From the definition of pψ, we have

pψ = Pr
h1,p,h5

(Dψ,ψ
−1

(12n) = 1)

=
#{(h1, p, h5) | D

ψ,ψ−1

(12n) = 1}

(#H0
n)(2

n)!(#H1
n)

.

Similarly to pR, we have

pψ =
∑

v∈vone

# {(h1, p, h5) | (h1, p, h5) satisfying (1)}

(#H0
n)(2

n)!(#H1
n)

.

Then from Lemma 3.1, we obtain that

pψ ≥
∑

v∈vone

(2n − 2m)!
(

1− 2ε ·m(m− 1)− 2m2

2n

)

(2n)!
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= None
(2n − 2m)!

(2n)!

(

1− 2ε ·m(m− 1)−
2m2

2n

)

= pR
(22n)!(2n − 2m)!

(22n −m)!(2n)!

(

1− 2ε ·m(m− 1)−
2m2

2n

)

.

Since (22n)!(2n−2m)!
(22n−m)!(2n)! ≥ 1 (This can be shown easily by an induction on m), we

have

pψ ≥ pR

(

1− 2ε ·m(m− 1)−
2m2

2n

)

≥ pR − 2ε ·m(m− 1)−
2m2

2n
. (3)

Applying the same argument to 1− pψ and 1− pR yields that

1− pψ ≥ 1− pR − 2ε ·m(m− 1)−
2m2

2n
. (4)

Finally, (3) and (4) give |pψ − pR| ≤ 2ε ·m(m− 1) +
2m2

2n .

3.2 Super-pseudorandomness of MISTY11

2n

Let D be a super-pseudorandom distinguisher for MISTY11
2n. D also has oracle

access to p and p−1, where p and p−1 are the third and fourth round permutations
of MISTY11

2n respectively. D makes at most m queries in total. We consider two
experiments, experiment 0 and experiment 1. In experiment 0, D has oracle
access to not only ψ and ψ−1, but also p and p−1, where ψ is randomly chosen
from MISTY11

2n. In experiment 1, D has oracle access to R, R
−1, p and p−1,

where R is randomly chosen from P2n and p is randomly chosen from Pn.
Define the advantage of D as follows.

Adv(D)
def
= |pψ − pR|

where
{

pψ
def
= Pr(Dψ,ψ

−1,p,p−1

(12n) = 1 | ψ
R
← MISTY11

2n)

pR
def
= Pr(DR,R

−1,p,p−1

(12n) = 1 | R
R
← P2n, p

R
← Pn)

Lemma 3.2. Let m0 and m1 be integers. Fix x(i) ∈ {0, 1}2n and y(i) ∈ {0, 1}2n

for 1 ≤ i ≤ m0 arbitrarily in such a way that {x(i)}1≤i≤m0
are all distinct and

{y(i)}1≤i≤m0
are all distinct. Similarly, fix X(i) ∈ {0, 1}n and Y (i) ∈ {0, 1}n

for 1 ≤ i ≤ m1 arbitrarily in such a way that {X(i)}1≤i≤m1
are all distinct and

{Y (i)}1≤i≤m1
are all distinct.

Then the number of ψ ∈ MISTY11
2n such that

ψ(x(i)) = y(i) for 1 ≤ ∀i ≤ m0 and p(X(i)) = Y (i) for 1 ≤ ∀i ≤ m1 (5)

is at least

(#H1
n)

2(2n − 2m0 −m1)!

(

1− 2ε ·m0(m0 − 1)−
4m0m1

2n
−
2m2

0

2n

)

.
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A proof is given in Appendix B.

Theorem 3.2. For any super-pseudorandom distinguisher D that also has ora-

cle access to p and p−1 and makes at most m queries in total,

Adv(D) ≤ 2ε ·m(m− 1) +
6m2

2n
.

Proof. Let O = R or ψ. The super-pseudorandom distinguisher D has oracle
access to O, O−1, p and p−1. Assume that D makes m0 queries to O or O

−1,
and m1 queries to p or p

−1, where m = m0 +m1.
There are four types of queries D can make: either (+, x) which denotes

the query “what is O(x)?”, (−, y) which denotes the query “what is O−1(y)?”,
(+, X) which denotes the query “what is p(X)?”, or (−, Y ) which denotes the
query “what is p−1(Y )?” For the i-th query D makes to O or O−1, define the
query-answer pair (x(i), y(i)) ∈ {0, 1}2n × {0, 1}2n, where either D’s query was
(+, x(i)) and the answer it got was y(i) or D’s query was (−, y(i)) and the answer
it got was x(i). Similarly for the i-th query D makes to p or p−1, define the query-
answer pair (X(i), Y (i)) ∈ {0, 1}n×{0, 1}n, where either D’s query was (+, X(i))
and the answer it got was Y (i) or D’s query was (−, Y (i)) and the answer it got
was X(i). Define view v and V of D as v = ((x(1), y(1)), . . . , (x(m0), y(m0))) and
V = ((X(1), Y (1)), . . . , (X(m1), Y (m1))). Without loss of generality, we assume
that {x(i)}1≤i≤m0

are all distinct, {y(i)}1≤i≤m0
are all distinct, {X(i)}1≤i≤m1

are all distinct and {Y (i)}1≤i≤m1
are all distinct.

Then similarly to the proof of Theorem 3.1, denote by CD(v, V ) the final
output of D.

Let (v,V )one
def
= {(v, V ) | CD(v, V ) = 1} and None

def
= #(v,V )one.

Evaluation of pR. From the definition of pR, we have

pR = Pr
R,p
(DR,R

−1,p,p−1

(12n) = 1)

=
#{(R, p) | DR,R

−1,p,p−1

(12n) = 1}

(22n)!(2n)!
.

For each (v, V ) ∈ (v,V )one, the number of (R, p) such that

R(x(i)) = y(i) for 1 ≤ ∀i ≤ m0 and p(X
(i)) = Y (i) for 1 ≤ ∀i ≤ m1 (6)

is exactly (22n −m0)!(2
n −m1)!. Therefore, we have

pR =
∑

(v,V )∈(v,V )one

#{(R, p) | (R, p) satisfying (6)}

(22n)!(2n)!

= None ·
(22n −m0)!

(22n)!
·
(2n −m1)!

(22n)!
.

Evaluation of pψ. From the definition of pψ, we have

pψ = Pr
h1,p,h5

(Dψ,ψ
−1,p,p−1

(12n) = 1)
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=
#{(h1, p, h5) | D

ψ,ψ−1,p,p−1

(12n) = 1}

(#H1
n)

2(2n)!
.

Similarly to pR, we have

pψ =
∑

(v,V )∈(v,V )one

# {(h1, p, h5) | (h1, p, h5) satisfying (5)}

(#H1
n)

2(2n)!
.

Then from Lemma 3.2, we obtain that

pψ ≥
∑

(v,V )∈(v,V )one

(2n − 2m0 −m1)!
(

1− 2ε ·m0(m0 − 1)−
4m0m1

2n −
2m2

0

2n

)

(2n)!

= None
(2n − 2m0 −m1)!

(2n)!

(

1− 2ε ·m0(m0 − 1)−
4m0m1

2n
−
2m2

0

2n

)

= pR
(22n)!(2n − 2m0 −m1)!

(22n −m0)!(2n −m1)!

(

1− 2ε ·m0(m0 − 1)−
4m0m1

2n
−
2m2

0

2n

)

.

Since (22n)!(2n−2m0−m1)!
(22n−m0)!(2n−m1)!

≥ 1 (This can be shown easily by an induction on m0),

we have

pψ ≥ pR

(

1− 2ε ·m0(m0 − 1)−
4m0m1

2n
−
2m2

0

2n

)

≥ pR − 2ε ·m0(m0 − 1)−
4m0m1

2n
−
2m2

0

2n

≥ pR − 2ε ·m(m− 1)−
6m2

2n
. (7)

Applying the same argument to 1− pψ and 1− pR yields that

1− pψ ≥ 1− pR − 2ε ·m(m− 1)−
6m2

2n
. (8)

Finally, (7) and (8) give |pψ − pR| ≤ 2ε ·m(m− 1) +
6m2

2n .

4 Negative result

Let g be a fixed and publicly known XOR-distinct permutation. In Theorem
3.2, we showed that ψ(h1, g, p, p

−1, h−1
5 ) is super-pseudorandom even if the dis-

tinguisher has oracle access to p and p−1, where h1 and h5 are uniform ε-XOR
universal permutations, and p is a random permutation.
One might think that ψ(h1, g, p, p, h

−1
5 ) is super-pseudorandom even if the

distinguisher has oracle access to p and p−1. In this section, however, we show
that this is not true. We can distinguish ψ(h1, g, p, p, h

−1
5 ) from a random per-

mutation with advantage very close to 1.
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More generally, let p1, p2, p, p5 ∈ Pn be random permutations and ψ =
ψ(p1, p2, p, p, p5). We prove that ψ is not pseudorandom if the distinguisher
has oracle access to p2, p

−1
2 and p. This proof implies that for any fixed and

public g, ψ(p1, g, p, p, p5) is not super-pseudorandom nor pseudorandom if the
distinguisher has oracle access to p.

Define the advantage of D as follows.

Adv(D)
def
= |pψ − pR|

where

{

pψ
def
= Pr(Dψ,p2,p

−1
2
,p(12n) = 1 | p1, p2, p, p5

R
← Pn, ψ = ψ(p1, p2, p, p, p5))

pR
def
= Pr(DR,p2,p

−1
2
,p(12n) = 1 | R

R
← P2n, p2, p

R
← Pn)

Theorem 4.1. There exists a pseudorandom distinguisher D that has oracle

access to p2, p
−1
2 and p and makes 6 queries in total,

Adv(D) ≥ 1−
2

2n
.

Proof. Let O = R or ψ. Our distinguisher D has oracle access to O, p2, p
−1
2 and

p. Consider the following D:

1. Ask (0, . . . , 0) ∈ {0, 1}n to p−1
2 and obtain A.

2. Pick X,A′ ∈ {0, 1}n such that A 6= A′ arbitrarily.

3. Ask (X,A) to O and obtain (Y,B).

4. Ask A⊕A′ to p2 and obtain C.

5. Ask A′ ⊕B to p and obtain D.

6. Ask A′ ⊕B ⊕ C to p and obtain E.

7. Ask (X,A⊕A′) to O and obtain (Z,F ).

8. Output “1” if and only if F = A′ ⊕B ⊕ C ⊕D ⊕ E.

If O = ψ, then B is the input to p in both third round and fourth round
at step 3 since p2(A) = (0, . . . , 0). Therefore we have p1(X) ⊕ A = B. Now the
input to p in the third round at step 7 is p1(X)⊕A⊕A

′ which is equivalent to
A′ ⊕ B. Next the input to p in the fourth round at step 7 is A′ ⊕ B ⊕ C since
p2(A⊕A

′) = C. Then we always have F = A′⊕B⊕C⊕D⊕E at step 8. Hence
we have pψ = 1.

If O = R, we have pR =
2n

22n−1 ≤
2
2n .

Corollary 4.1. For any fixed and public g, ψ(p1, g, p, p, p5) is not super-pseudo-
random if the distinguisher has oracle access to p.

Proof. From the proof of Theorem 4.1.
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5 Conclusion

In this paper, we proposed more efficient constructions of super-pseudorandom
permutations based on the five round MISTY type permutation than those given
in [3] .
In particular, we showed that the second round permutation g need not be

cryptographic at all, i.e., no randomness nor secrecy is required.
More precisely, let p and pi be random permutations, then we proved that

1. ψ(h1, g, p, p
−1, h−1

5 ) is super-pseudorandom, where h1 is an ε-XOR universal
permutation, g is a (publicly known and fixed) XOR-distinct permutation,
and h5 is a uniform ε-XOR universal permutation (Theorem 3.1),

2. ψ(h1, g, p, p
−1, h−1

5 ) is super-pseudorandom, even if the adversary has oracle
access to p and p−1, where h1 and h5 are uniform ε-XOR universal permu-
tations, and g is a (publicly known and fixed) XOR-distinct permutation
(Theorem 3.2),

3. but ψ(p1, p2, p, p, p5) is not pseudorandom nor super-pseudorandom, if the
adversary has oracle access to p2, p

−1
2 and p (Theorem 4.1).
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Appendix A. Proof of Lemma 3.1

In ψ, we denote by I
(i)
3 ∈ {0, 1}n the input to p in the third round, and denote

by O
(i)
3 ∈ {0, 1}n the output of it. Similarly, I

(i)
4 , O

(i)
4 ∈ {0, 1}n are the input

and output of p in the fourth round, respectively. That is, p(I
(i)
3 ) = O

(i)
3 and

p(I
(i)
4 ) = O

(i)
4 .

Number of h1. First, for any fixed i and j such that 1 ≤ i < j ≤ m:

– if x
(i)
L = x

(j)
L , then there exists no h1 such that

h1(x
(i)
L )⊕ x

(i)
R = h1(x

(j)
L )⊕ x

(j)
R (9)

since x
(i)
L = x

(j)
L implies x

(i)
R 6= x

(j)
R ;

– if x
(i)
L 6= x

(j)
L , then the number of h1 which satisfies (9) is at most ε#H

0
n

since h1 is an ε-XOR universal permutation.

Therefore, the number of h1 such that

h1(x
(i)
L )⊕ x

(i)
R = h1(x

(j)
L )⊕ x

(j)
R for 1 ≤ ∃i < ∃j ≤ m (10)

is at most ε
(

m
2

)

#H0
n.

Next, for any fixed i and j such that 1 ≤ i < j ≤ m:

– if x
(i)
L = x

(j)
L , then there exists no h1 such that

h1(x
(i)
L )⊕ g(x

(i)
R )⊕ x

(i)
R = h1(x

(j)
L )⊕ g(x

(j)
R )⊕ x

(j)
R (11)

since x
(i)
L = x

(j)
L implies x

(i)
R 6= x

(j)
R , and our XOR-distinct g guarantees

g(x
(i)
R )⊕ x

(i)
R 6= g(x

(j)
R )⊕ x

(j)
R ;

– if x
(i)
L 6= x

(j)
L , then the number of h1 which satisfies (11) is at most ε#H

0
n

since h1 is an ε-XOR universal permutation.

Therefore, the number of h1 such that

h1(x
(i)
L )⊕ g(x

(i)
R )⊕ x

(i)
R = h1(x

(j)
L )⊕ g(x

(j)
R )⊕ x

(j)
R for 1 ≤ ∃i < ∃j ≤ m (12)

is at most ε
(

m
2

)

#H0
n.

Then, from (10) and (12), the number of h1 such that

h1(x
(i)
L )⊕ x

(i)
R 6= h1(x

(j)
L )⊕ x

(j)
R for 1 ≤ ∀i < ∀j ≤ m, and

h1(x
(i)
L )⊕ g(x

(i)
R )⊕ x

(i)
R 6= h1(x

(j)
L )⊕ g(x

(j)
R )⊕ x

(j)
R for 1 ≤ ∀i < ∀j ≤ m

}

(13)
is at least #H0

n−2ε
(

m
2

)

#H0
n. Fix h1 which satisfies (13) arbitrarily. This implies

that I
(1)
3 , . . . , I

(m)
3 and O

(1)
4 , . . . , O

(m)
4 are fixed in such a way that:

– I
(i)
3 6= I

(j)
3 for 1 ≤ ∀i < ∀j ≤ m, and
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– O
(i)
4 6= O

(j)
4 for 1 ≤ ∀i < ∀j ≤ m.

Number of h5. Similarly, the number of h5 such that

h5(y
(i)
L ⊕ y

(i)
R )⊕ y

(i)
R 6= h5(y

(j)
L ⊕ y

(j)
R )⊕ y

(j)
R for 1 ≤ ∀i < ∀j ≤ m,

h5(y
(i)
L ⊕ y

(i)
R )⊕O

(i)
4 6= h5(y

(j)
L ⊕ y

(j)
R )⊕O

(j)
4 for 1 ≤ ∀i < ∀j ≤ m,

h5(y
(i)
L ⊕ y

(i)
R )⊕O

(i)
4 6= O

(j)
4 for 1 ≤ ∀i,∀j ≤ m, and

h5(y
(i)
L ⊕ y

(i)
R )⊕ y

(i)
R 6= I

(j)
3 for 1 ≤ ∀i,∀j ≤ m,



















(14)

is at least #H1
n − 2ε

(

m
2

)

#H1
n −

2m2#H1
n

2n . Fix h5 which satisfies (14) arbitrarily.

This implies that O
(1)
3 , . . . , O

(m)
3 and I

(1)
4 , . . . , I

(m)
4 are fixed in such a way that:

– I
(i)
4 6= I

(j)
4 for 1 ≤ ∀i < ∀j ≤ m,

– O
(i)
3 6= O

(j)
3 for 1 ≤ ∀i < ∀j ≤ m,

– O
(i)
3 6= O

(j)
4 for 1 ≤ ∀i,∀j ≤ m, and

– I
(i)
4 6= I

(j)
3 for 1 ≤ ∀i,∀j ≤ m.

Number of p. Now h1 and h5 are fixed in such a way that

I
(1)
3 , . . . , I

(m)
3 , I

(1)
4 , . . . , I

(m)
4

(which are inputs to p) are all distinct and

O
(1)
3 , . . . , O

(m)
3 , O

(1)
4 , . . . , O

(m)
4

(which are corresponding outputs of p) are all distinct. In other words, for p, the
above 2m input-output pairs are determined. The other 2n − 2m input-output
pairs are undetermined. Therefore we have (2n − 2m)! possible choice of p for
any such fixed h1 and h5.

To summarize, we have:

– at least #H0
n − 2ε

(

m
2

)

#H0
n choice of h1,

– at least #H1
n − 2ε

(

m
2

)

#H1
n −

2m2#H1
n

2n choice of h5 when h1 is fixed, and
– (2n − 2m)! choice of p when h1 and h5 are fixed.

Then the number of ψ ∈ MISTY01
2n which satisfy (1) is at least

(#H0
n)(#H

1
n)(2

n − 2m)!

(

1− 2ε

(

m

2

))(

1− 2ε

(

m

2

)

−
2m2

2n

)

≥ (#H0
n)(#H

1
n)(2

n − 2m)!

(

1− 2ε ·m(m− 1)−
2m2

2n

)

This concludes the proof of the lemma.



164

Appendix B. Proof of Lemma 3.2

We use the same definition of I
(i)
3 , O

(i)
3 , I

(i)
4 and O

(i)
4 as in the proof of Lemma

3.1.

Number of h1. First, similarly to the proof of Lemma 3.1, the number of h1

such that

h1(x
(i)
L )⊕ x

(i)
R 6= h1(x

(j)
L )⊕ x

(j)
R for 1 ≤ ∀i < ∀j ≤ m0,

h1(x
(i)
L )⊕ x

(i)
R 6= X(j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m1,

h1(x
(i)
L )⊕ g(x

(i)
R )⊕ x

(i)
R 6= h1(x

(j)
L )⊕ g(x

(j)
R )⊕ x

(j)
R for 1 ≤ ∀i < ∀j ≤ m0,

h1(x
(i)
L )⊕ g(x

(i)
R )⊕ x

(i)
R 6= Y (j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m1



















(15)

is at least #H1
n−2ε

(

m0

2

)

#H1
n−

2m0m1#H
1
n

2n . Fix h1 which satisfies (15) arbitrarily.

This implies that I
(1)
3 , . . . , I

(m0)
3 and O

(1)
4 , . . . , O

(m0)
4 are fixed in such a way that:

– I
(i)
3 6= I

(j)
3 for 1 ≤ ∀i < ∀j ≤ m0,

– I
(i)
3 6= X(j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m1,

– O
(i)
4 6= O

(j)
4 for 1 ≤ ∀i < ∀j ≤ m0, and

– O
(i)
4 6= Y (j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m1.

Number of h5. Similarly, the number of h5 such that

h5(y
(i)
L ⊕ y

(i)
R )⊕ y

(i)
R 6= h5(y

(j)
L ⊕ y

(j)
R )⊕ y

(j)
R for 1 ≤ ∀i < ∀j ≤ m0,

h5(y
(i)
L ⊕ y

(i)
R )⊕ y

(i)
R 6= X(j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m0,

h5(y
(i)
L ⊕ y

(i)
R )⊕O

(i)
4 6= h5(y

(j)
L ⊕ y

(j)
R )⊕O

(j)
4 for 1 ≤ ∀i < ∀j ≤ m0,

h5(y
(i)
L ⊕ y

(i)
R )⊕O

(i)
4 6= Y (j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m0,

h5(y
(i)
L ⊕ y

(i)
R )⊕O

(i)
4 6= O

(j)
4 for 1 ≤ ∀i,∀j ≤ m0, and

h5(y
(i)
L ⊕ y

(i)
R )⊕ y

(i)
R 6= I

(j)
3 for 1 ≤ ∀i,∀j ≤ m0,







































(16)

is at least #H1
n − 2ε

(

m0

2

)

#H1
n −

2m0m1#H
1
n

2n −
2m2

0#H
1
n

2n . Fix h5 which satisfies

(16) arbitrarily. This implies that O
(1)
3 , . . . , O

(m0)
3 and I

(1)
4 , . . . , I

(m0)
4 are fixed

in such a way that:

– I
(i)
4 6= I

(j)
4 for 1 ≤ ∀i < ∀j ≤ m0,

– I
(i)
4 6= X(j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m1,

– O
(i)
3 6= O

(j)
3 for 1 ≤ ∀i < ∀j ≤ m0,

– O
(i)
3 6= Y (j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m1,

– O
(i)
3 6= O

(j)
4 for 1 ≤ ∀i,∀j ≤ m0, and

– I
(i)
4 6= I

(j)
3 for 1 ≤ ∀i,∀j ≤ m0.

Number of p. Now h1 and h5 are fixed in such a way that

I
(1)
3 , . . . , I

(m0)
3 , I

(1)
4 , . . . , I

(m0)
4 , X(1), . . . , X(m1)
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(which are inputs to p) are all distinct and

O
(1)
3 , . . . , O

(m0)
3 , O

(1)
4 , . . . , O

(m0)
4 , Y (1), . . . , Y (m1)

(which are corresponding outputs of p) are all distinct. Then we have (2n −
2m0 −m1)! possible choice of p for any such fixed h1 and h5.

To summarize, we have:

– at least #H1
n − 2ε

(

m0

2

)

#H1
n −

2m0m1#H
1
n

2n choice of h1,

– at least #H1
n − 2ε

(

m0

2

)

#H1
n −

2m0m1#H
1
n

2n −
2m2

0#H
1
n

2n choice of h5 when h1 is
fixed, and

– (2n − 2m0 −m1)! choice of p when h1 and h5 are fixed.

Then the number of ψ ∈ MISTY11
2n which satisfy (5) is at least

(#H1
n)

2(2n − 2m0 −m1)!

×

(

1− 2ε

(

m0

2

)

−
2m0m1

2n

)(

1− 2ε

(

m0

2

)

−
2m0m1

2n
−
2m2

0

2n

)

≥ (#H1
n)

2(2n − 2m0 −m1)!

(

1− 2ε ·m0(m0 − 1)−
4m0m1

2n
−
2m2

0

2n

)

This concludes the proof of the lemma.


