
The Round Functions of RIJNDAEL Generate

the Alternating Group

Ralph Wernsdorf

Rohde & Schwarz SIT GmbH, Agastraße 3,
D-12489 Berlin, Germany

Ralph.Wernsdorf@SIT.rohde-schwarz.com

Abstract. For the block cipher RIJNDAEL with a block length of 128
bits group theoretic properties of the round functions are derived. Es-
pecially it is shown that these round functions generate the alternating
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1 Introduction

The RIJNDAEL algorithm with a block length of 128 bits is a block cipher
that was selected for a NIST standard [4] in the AES selection process. It was
developed by J. Daemen and V. Rijmen [1].

In the following a proof is given that the round functions of RIJNDAEL with
a block length of 128 bits generate the alternating group over the set {0, 1}128

of all 128-bit-vectors.

This result implies that from the algebraic point of view some thinkable
weaknesses of RIJNDAEL can be excluded (if the generated group were smaller,
then this would point to regularities in the algorithm, see for example [2], [5],
[9]).

Similar properties are known for the DES ([6]) and for SAFER++ ([7]).

2 Definitions and Notations

The notation of the RIJNDAEL round function components will be similar to
the RIJNDAEL definition given in [1]. One exception will be that the states are
not given in a matrix form. They are given as 128-bit- or 16-byte-vectors, where
the correspondence to the matrices in [1] is defined row by row from left to right.
The round functions Rk are defined by

∀k ∈ {0, 1}128 ∀x ∈ {0, 1}128 : Rk(x) := k ⊕mc(rs(s(x))),
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where ”⊕” denotes the bitwise XOR-operation,

k ∈ {0, 1}128 denotes the corresponding round subkey,

mc : {0, 1}128 → {0, 1}128 denotes the MixColumn-transformation
according to [1], p. 12,

rs : {0, 1}128 → {0, 1}128 denotes the ShiftRow -transformation
according to [1], p. 11,

s : {0, 1}128 → {0, 1}128 denotes the application of the S-box S
16 times in parallel (the ByteSub-trans-
formation, [1], p. 11).

The permutation group considered here is defined by:

G := 〈{Rk : {0, 1}
128 → {0, 1}128 | k ∈ {0, 1}128}〉,

where 〈P 〉 denotes the closure of a permutation set P with respect to concatena-
tion. The generating set of G given above contains 2128 permutations. Properties
of the round subkeys caused by the key scheduling will be neglected here.

3 Some Properties of the Generated Group

Lemma 1. The group G is transitive on the set {0, 1}128.

Proof. By concatenations Rk ◦R−1

k′ (where the transformation with k′ is carried
out at first) with suitable round subkeys k, k′, each given element x of the set
{0, 1}128 can obviously be transformed to each other arbitrarily given element x′

of the set {0, 1}128. This can be achieved very simply by choosing k⊕k′ = x⊕x′.
2

Lemma 2. The group G contains only even permutations.

Proof. In the following we will apply the well known fact that a permutation
over a set with an even number of elements is even if and only if its cycle
representation (including the fixed points) contains an even number of cycles.
The mappings x → k ⊕ x are even permutations since for k = (0, 0, ..., 0) we

obtain the identity permutation and for k 6= (0, 0, ..., 0) the cycle representation
consists of 2127 cycles of length 2.
The linear transformationsmc and rs are even permutations since binary one-

to-one linear transformations over {0, 1}n, n ≥ 3, are even permutations. This
follows from the facts that each regular binary matrix can be obtained from the
identity matrix by elementary row transformations (i.e., binary addition of one
row to another row), and that these elementary row transformations (considered
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as linear mappings over {0, 1}n) are permutations with 2n−1 fixed points and
2n−2 cycles of length 2.
The permutation s is even because it can be represented as a concatenation of

16 permutations that carry out the S-box transformation for one byte and leave
the other 15 bytes fixed. The cycle representation of each such permutation
contains a number of cycles that is a multiple of 2120.
Now the proof is complete since the concatenation of even permutations

always yields an even permutation. 2

Lemma 3. The S-box permutation S : {0, 1}8 → {0, 1}8 is an odd permutation.

Proof. The cycle representation of S consists of five cycles (with lengths 87, 81,
59, 27, and 2, respectively). Applying the fact mentioned at the beginning of the
proof of Lemma 2, it follows that S is an odd permutation. 2

Lemma 4. For all 16-tuples of even permutations Pj : {0, 1}
8 → {0, 1}8, j =

0, 1, ..., 15, the mapping

M ′ : {0, 1}128 → {0, 1}128, (x0, ..., x127) 7→ (y0, ..., y127),

defined by

(y8j , y8j+1, ..., y8j+7) := Pj (x8j , x8j+1, ..., x8j+7)

for all j = 0, 1, ..., 15, is an element of G.

Proof. We consider products of the form R−1

k ◦ Rk′ and Rk ◦ R−1

k′ (where the
transformations with k′ are carried out first).
Let j ∈ {0, 1, ..., 15} be arbitrarily fixed. Then we have for all x ∈ {0, 1}128:
If ∀ i ∈ {0, 1, ..., 127} \ {8j, 8j + 1, ..., 8j + 7} : ki = k′

i,
then Rk ◦R−1

k′ changes no more than the j-th byte of x.
If ∀ i ∈ {0, 1, ..., 127} \ {8j, 8j + 1, ..., 8j + 7} :

(rs−1(mc−1(k)))i = (rs
−1(mc−1(k′)))i,

then R−1

k ◦Rk′ changes no more than the j-th byte of x.
This implies that we can define a subgroup of G, namely the group that is
generated by all permutations R−1

k ◦ Rk′ and Rk ◦ R−1

k′ with the subkey pairs
(k, k′) as above. This subgroup acts only on the j-th byte and will therefore be
considered as a permutation group on {0, 1}8. This group is generated by all
byte-permutations of the form x→ k⊕ x and all byte-permutations of the form
x → S−1(k ⊕ S(x)). Therefore it is transitive on this set and it contains only
even permutations on this set.
After a random search for the following subkeys (k1, k2, ..., k8) and the fol-

lowing state x, a cycle of the permutation

Rk8 ◦R−1

k7 ◦R−1

k6 ◦Rk5 ◦Rk4 ◦R−1

k3 ◦R−1

k2 ◦Rk1

with length 233 was found (bytes in hexadecimal notation):
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k1 = k3 = k5 = k7 = (0, 0, ..., 0),
the j-th byte of rs−1(mc−1(k2)) is 0xb9, the other 15 bytes are zero,
the j-th byte of k4 is 0x8b, the other 15 bytes are zero,
the j-th byte of rs−1(mc−1(k6)) is 0xdd, the other 15 bytes are zero,
the j-th byte of k8 is 0x1f, the other 15 bytes are zero,
the j-th byte of x is 0x9e, the other 15 bytes are randomly chosen.

Since the cycle length 233 is a prime greater than 256/2 and less than 256, the
subgroup is primitive on {0, 1}8 (such a cycle does not match to any structure
of imprimitivity, see [7]).
Now Theorem 13.9 in [8], p. 39 can be applied: ”Let p be a prime and G

be a group of degree n = p + k with k ≥ 3. If G contains an element of degree

and order p , then G is either alternating or symmetric.” Here the degree of a
permutation group over a finite set is defined as the number of elements that are
changed by at least one permutation of the group. The degree of a permutation

is defined as the degree of the cyclic group generated by this permutation.
It follows that the considered subgroup equals the alternating group on

{0, 1}8. (Other cycles can be ”cancelled” by considering suitable powers of
the permutation.)
Since j and the remaining 15 bytes of x were chosen arbitrarily and the

considered transformations have no influence on other bytes than the j-th byte,
the proof of the Lemma is complete. 2

Corollary 1. The transformation mc ◦ rs ◦ h, where h denotes an arbitrarily

fixed parallel application of 16 odd byte-permutations, is an element of G.

Proof. We choose the round function Rk with the all zero subkey. From Lemma 4
we know that all parallel applications of 16 even byte-permutations are elements
of G. Since the S-box is an odd byte-permutation and mc ◦ rs ◦ s is an element
of G, the proof can easily be completed by considering concatenations of group
elements. 2

4 Proof that the Round Functions Generate the

Alternating Group

Lemma 5. The group G is doubly transitive on the set {0, 1}128, i.e., each pair

of different elements from {0, 1}128 can be mapped to each pair of different ele-

ments from {0, 1}128.

Proof. Because the group G is transitive on the set {0, 1}128, it suffices to show
that the subgroup G0 of G containing all elements of G which let the all zero
vector fixed, is transitive on {0, 1}8 \ {(0, 0, ..., 0)} (see for example [8], p. 19).
Let us start with an arbitrary non-zero vector X ∈ {0, 1}128. With the help of

Lemma 4, it can be shown that it is possible to find an element of the subgroup
G0 that transforms X to a vector X ′ 6= (0, 0, ..., 0) with:

∀j ∈ {0, 1, ..., 15} : (X ′
8j , X

′
8j+1, ..., X

′
8j+7) ∈ {0x00, 0x01}.
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(Choose even permutations Pj that (*) let 0x00 fixed and that transform the
non-all-zero-components (X ′

8j , X
′
8j+1, ..., X

′
8j+7) to 0x01.)

By computations on a PC (there are only 216 − 1 such vectors X ′), it
was verified that it is possible to transform the mentioned X ′ to the vector
(0x01, 0x01, ..., 0x01) by repeated concatenations of mc ◦ rs ◦ h′ and permuta-
tions of the form (*) above. Here h′ denotes the parallel application of 16 times
the odd byte-permutation that changes 0x01 to 0x02, changes 0x02 to 0x01 and
lets all other bytes fixed.
Because we have mc ◦ rs ◦ h′ ∈ G0 (see Corollary 1), it follows that G0 is

transitive on the set {0, 1}128 \ {(0, 0, ..., 0)}. Hence, G is doubly transitive on
the set {0, 1}128. 2

Theorem 1. The group G is the alternating group on the set {0, 1}128.

Proof. From Lemma 4 it follows that the permutation (P0, P1, P1, ..., P1), where
P1 is the identity permutation on {0, 1}

8 and where the cycle representation of
P0 contains a 3-cycle and 253 fixed points, is an element of G. This permutation
lets exactly 253 · 215·8 elements fixed. Hence, its degree is equal to 3 · 2120.
The minimal degree of a permutation group is the smallest degree of the

non-identity-permutations in the group. The minimal degree of G is not greater
than 3 · 2120.
Now, let us suppose that G is smaller than the alternating group. Then,

(because of Lemma 5 G is doubly transitive) according to Theorem 15.1 in [8],
p. 42 : ”Let G be a a k-ply transitive group, neither alternating nor symmetric.

Let n be its degree, m its minimal degree. If k ≥ 2, then m ≥ n
3
− 2

√
n

3
.”, we

obtain the contradiction:

3 · 2120 ≥
2128

3
−
265

3
.

From this together with the result of Lemma 2, it follows thatG is the alternating
group on the set {0, 1}128. 2

5 Conclusions and Remarks

By the result stated in the Theorem, several thinkable regularities like the exis-
tence of nontrivial factor groups or a too small diversity of occurring permuta-
tions in the RIJNDAEL algorithm can be excluded (the alternating group is a
large, simple, primitive and (2128− 2)-transitive permutation group).
With respect to the Markov approach to differential cryptanalysis, we obtain

[2]: For all corresponding Markov ciphers the chain of differences is irreducible
and aperiodic, i.e., after sufficiently many RIJNDAEL rounds all differences will
be almost equally probable. If the hypothesis of stochastic equivalence holds for
a part of the corresponding Markov ciphers, then for all of these Markov ciphers
RIJNDAEL is secure against differential cryptanalysis attacks after a sufficient
number of rounds.
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The results give evidence that the S-box and the other transformations are
well chosen from the algebraic point of view. Especially the results of [3] have
no consequences with respect to the sizes of the considered permutation groups.

In the following remarks some generalizations (with proof sketches) are given:

Remark 1. Let us take a set of 129 pairwise different round subkeys that includes
a basis of the binary vector space {0, 1}128. Then the 129 corresponding round
functions suffice to generate the alternating group. This follows from the fact
that all round functions can be represented as concatenations of these 129 round
functions and their inverses.

Remark 2. Let us take a byte permutation S ′ such that all byte-permutations
of the form x → k ⊕ x and all byte-permutations of the form x → S ′−1(k ⊕
S′(x)) generate the alternating group on {0, 1}8. Then the round functions of
(modified) RIJNDAEL with the S-box S ′ also generate the alternating group.
For odd permutations S′ this can be derived from the proofs given above. For
even permutations S′ Lemma 5 can be proved in a similar way and the other
steps are the same (the result of Corollary 1 is not needed here).
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